Implementation of quantum and classical discrete fractional Fourier transforms
Fourier analysis has become a standard tool in contemporary science. Here, Weimann et al. report classical and quantum optical realizations of the discrete fractional Fourier transform, a generalization of the Fourier transform, with potential applications in integrated quantum computation.
Guardado en:
Autores principales: | Steffen Weimann, Armando Perez-Leija, Maxime Lebugle, Robert Keil, Malte Tichy, Markus Gräfe, René Heilmann, Stefan Nolte, Hector Moya-Cessa, Gregor Weihs, Demetrios N. Christodoulides, Alexander Szameit |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2aeceb457d864261aadab439038810bc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Discrete Harmonic Analysis related to classical orthogonal polynomials
por: Arenas Gómez, Alberto
Publicado: (2019) -
Thermal characteristics of longitudinal fin with Fourier and non-Fourier heat transfer by Fourier sine transforms
por: Basma Souayeh, et al.
Publicado: (2021) -
Enhancing coherent transport in a photonic network using controllable decoherence
por: Devon N. Biggerstaff, et al.
Publicado: (2016) -
Symmetry-controlled edge states in the type-II phase of Dirac photonic lattices
por: Georgios G. Pyrialakos, et al.
Publicado: (2020) -
Topological protection versus degree of entanglement of two-photon light in photonic topological insulators
por: Konrad Tschernig, et al.
Publicado: (2021)