Assessing combining abilities, genomic data, and genotype × environment interactions to predict hybrid grain sorghum performance
Abstract Genomic selection in maize (Zea mays L.) has been one factor that has increased the rate of genetic gain when compared with other cereals. However, the technological foundations in maize also exist in other cereal crops that would allow prediction of hybrid performance based on general (GCA...
Enregistré dans:
Auteurs principaux: | Jales M. O. Fonseca, Patricia E. Klein, Jose Crossa, Angela Pacheco, Paulino Perez‐Rodriguez, Perumal Ramasamy, Robert Klein, William L Rooney |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Wiley
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/2af6ec11fe2d42038db80e7c7927a858 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Phylogenetic relationships in the Sorghum genus based on sequencing of the chloroplast and nuclear genes
par: Galaihalage Ananda, et autres
Publié: (2021) -
Genome‐enabled prediction for sparse testing in multi‐environmental wheat trials
par: Leonardo Crespo‐Herrera, et autres
Publié: (2021) -
Comparison of genomic selection models for exploring predictive ability of complex traits in breeding programs
par: Lance F. Merrick, et autres
Publié: (2021) -
Gain from genomic selection for a selection index in two‐row spring barley
par: Daniel W. Sweeney, et autres
Publié: (2021) -
Deep‐learning power and perspectives for genomic selection
par: Osval Antonio Montesinos‐López, et autres
Publié: (2021)