IoT Dataset Validation Using Machine Learning Techniques for Traffic Anomaly Detection
With advancements in engineering and science, the application of smart systems is increasing, generating a faster growth of the IoT network traffic. The limitations due to IoT restricted power and computing devices also raise concerns about security vulnerabilities. Machine learning-based techniques...
Guardado en:
Autores principales: | Laura Vigoya, Diego Fernandez, Victor Carneiro, Francisco J. Nóvoa |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2af890f3c1fe49feb1715305b98ff4c3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Anomaly-Based Intrusion Detection System for Internet of Medical Things Networks
por: Georgios Zachos, et al.
Publicado: (2021) -
MADS Based on DL Techniques on the Internet of Things (IoT): Survey
por: Hussah Talal, et al.
Publicado: (2021) -
A Robust Framework for MADS Based on DL Techniques on the IoT
por: Hussah Talal, et al.
Publicado: (2021) -
Advanced Authentication Method by Geometric Data Analysis Based on User Behavior and Biometrics for IoT Device with Touchscreen
por: Jiwoo Lee, et al.
Publicado: (2021) -
Shape adaptive IRS based SAG IoT network
por: Fei Qi, et al.
Publicado: (2021)