Multilingual Neural Machine Translation for Low-Resource Languages
In recent years, Neural Machine Translation (NMT) has been shown to be more effective than phrase-based statistical methods, thus quickly becoming the state of the art in machine translation (MT). However, NMT systems are limited in translating low-resourced languages, due to the significant amount...
Guardado en:
Autores principales: | Surafel M. Lakew, Marcello Federico, Matteo Negri, Marco Turchi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Accademia University Press
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2b007dd0adc846848c6d4c6ca15810d3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multi-source Transformer for Automatic Post-Editing of Machine Translation Output
por: Amirhossein Tebbifakhr, et al.
Publicado: (2019) -
Towards Automatic Subtitling: Assessing the Quality of Old and New Resources
por: Alina Karakanta, et al.
Publicado: (2020) -
Introduction to the Special Issue on Natural Language and Learning Machines
por: Dan Roth, et al.
Publicado: (2017) -
AlBERTo: Modeling Italian Social Media Language with BERT
por: Marco Polignano, et al.
Publicado: (2019) -
Finding the Neural Net: Deep-learning Idiom Type Identification from Distributional Vectors
por: Yuri Bizzoni, et al.
Publicado: (2018)