A thermophilic cell-free cascade enzymatic reaction for acetoin synthesis from pyruvate
Abstract Acetoin (3-hydroxy-2-butanone) is an important bio-based platform chemical with wide applications. In vitro enzyme catalysed synthesis exhibits great feasibility in the production of chemicals with high purity. In the present work, a synthetic pathway involving a two-step continuous reactio...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2b063dd66e784cc2b8fc18b51a41ebbe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2b063dd66e784cc2b8fc18b51a41ebbe |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2b063dd66e784cc2b8fc18b51a41ebbe2021-12-02T11:40:30ZA thermophilic cell-free cascade enzymatic reaction for acetoin synthesis from pyruvate10.1038/s41598-017-04684-82045-2322https://doaj.org/article/2b063dd66e784cc2b8fc18b51a41ebbe2017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-04684-8https://doaj.org/toc/2045-2322Abstract Acetoin (3-hydroxy-2-butanone) is an important bio-based platform chemical with wide applications. In vitro enzyme catalysed synthesis exhibits great feasibility in the production of chemicals with high purity. In the present work, a synthetic pathway involving a two-step continuous reaction was constructed in vitro for acetoin production from pyruvate at improved temperature. Thermostable candidates, acetolactate synthase (coAHASL1 and coAHASL2 from Caldicellulosiruptor owensensis OL) and α-acetolactate decarboxylase (bsALDC from Bacillus subtilis IPE5-4) were cloned, heterologously expressed, and characterized. All the enzymes showed maximum activities at 65–70 °C and pH of 6.5. Enzyme kinetics analysis showed that coAHASL1 had a higher activity but lower affinity against pyruvate than that of coAHASL2. In addition, the activities of coAHASL1 and bsALDC were promoted by Mn2+ and NADPH. The cascade enzymatic reaction was optimized by using coAHASL1 and bsALDC based on their kinetic properties. Under optimal conditions, a maximum concentration of 3.36 ± 0.26 mM acetoin was produced from 10 mM pyruvate after reaction for 24 h at 65 °C. The productivity of acetoin was 0.14 mM h−1, and the yield was 67.80% compared with the theoretical value. The results confirmed the feasibility of synthesis of acetoin from pyruvate with a cell-free enzyme catalysed system at improved temperature.Xiaojing JiaYing LiuYejun HanNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Xiaojing Jia Ying Liu Yejun Han A thermophilic cell-free cascade enzymatic reaction for acetoin synthesis from pyruvate |
description |
Abstract Acetoin (3-hydroxy-2-butanone) is an important bio-based platform chemical with wide applications. In vitro enzyme catalysed synthesis exhibits great feasibility in the production of chemicals with high purity. In the present work, a synthetic pathway involving a two-step continuous reaction was constructed in vitro for acetoin production from pyruvate at improved temperature. Thermostable candidates, acetolactate synthase (coAHASL1 and coAHASL2 from Caldicellulosiruptor owensensis OL) and α-acetolactate decarboxylase (bsALDC from Bacillus subtilis IPE5-4) were cloned, heterologously expressed, and characterized. All the enzymes showed maximum activities at 65–70 °C and pH of 6.5. Enzyme kinetics analysis showed that coAHASL1 had a higher activity but lower affinity against pyruvate than that of coAHASL2. In addition, the activities of coAHASL1 and bsALDC were promoted by Mn2+ and NADPH. The cascade enzymatic reaction was optimized by using coAHASL1 and bsALDC based on their kinetic properties. Under optimal conditions, a maximum concentration of 3.36 ± 0.26 mM acetoin was produced from 10 mM pyruvate after reaction for 24 h at 65 °C. The productivity of acetoin was 0.14 mM h−1, and the yield was 67.80% compared with the theoretical value. The results confirmed the feasibility of synthesis of acetoin from pyruvate with a cell-free enzyme catalysed system at improved temperature. |
format |
article |
author |
Xiaojing Jia Ying Liu Yejun Han |
author_facet |
Xiaojing Jia Ying Liu Yejun Han |
author_sort |
Xiaojing Jia |
title |
A thermophilic cell-free cascade enzymatic reaction for acetoin synthesis from pyruvate |
title_short |
A thermophilic cell-free cascade enzymatic reaction for acetoin synthesis from pyruvate |
title_full |
A thermophilic cell-free cascade enzymatic reaction for acetoin synthesis from pyruvate |
title_fullStr |
A thermophilic cell-free cascade enzymatic reaction for acetoin synthesis from pyruvate |
title_full_unstemmed |
A thermophilic cell-free cascade enzymatic reaction for acetoin synthesis from pyruvate |
title_sort |
thermophilic cell-free cascade enzymatic reaction for acetoin synthesis from pyruvate |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/2b063dd66e784cc2b8fc18b51a41ebbe |
work_keys_str_mv |
AT xiaojingjia athermophiliccellfreecascadeenzymaticreactionforacetoinsynthesisfrompyruvate AT yingliu athermophiliccellfreecascadeenzymaticreactionforacetoinsynthesisfrompyruvate AT yejunhan athermophiliccellfreecascadeenzymaticreactionforacetoinsynthesisfrompyruvate AT xiaojingjia thermophiliccellfreecascadeenzymaticreactionforacetoinsynthesisfrompyruvate AT yingliu thermophiliccellfreecascadeenzymaticreactionforacetoinsynthesisfrompyruvate AT yejunhan thermophiliccellfreecascadeenzymaticreactionforacetoinsynthesisfrompyruvate |
_version_ |
1718395571145801728 |