Solar forcing of early Holocene droughts on the Yucatán peninsula

Abstract A speleothem record from the north-eastern Yucatán peninsula (Mexico) provides new insights into the tropical hydro-climate of the Americas between 11,040 and 9520 a BP on up to sub-decadal scale. Despite the complex atmospheric reorganization during the end of the last deglaciation, the do...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Sophie F. Warken, Nils Schorndorf, Wolfgang Stinnesbeck, Dominik Hennhoefer, Sarah R. Stinnesbeck, Julius Förstel, Simon D. Steidle, Jerónimo Avilés Olguin, Norbert Frank
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/2b0a9e0f4cae4683a0e36234f61d5f6e
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Abstract A speleothem record from the north-eastern Yucatán peninsula (Mexico) provides new insights into the tropical hydro-climate of the Americas between 11,040 and 9520 a BP on up to sub-decadal scale. Despite the complex atmospheric reorganization during the end of the last deglaciation, the dominant internal leading modes of precipitation variability during the late Holocene were also active during the time of record. While multi-decadal variations were not persistent, Mesoamerican precipitation was dominated by changes on the decadal- and centennial scale, which may be attributed to ENSO activity driven by solar forcing. Freshwater fluxes from the remnant Laurentide ice sheet into the Gulf of Mexico and the North Atlantic have additionally modulated the regional evaporation/precipitation balance. In particular, this study underlines the importance of solar activity on tropical and subtropical climate variability through forcing of the tropical Pacific, providing a plausible scenario for observed recurrent droughts on the decadal scale throughout the Holocene.