Deep learning from HE slides predicts the clinical benefit from adjuvant chemotherapy in hormone receptor-positive breast cancer patients
Abstract We hypothesized that a deep-learning algorithm using HE images might be capable of predicting the benefits of adjuvant chemotherapy in cancer patients. HE slides were retrospectively collected from 1343 de-identified breast cancer patients at the Samsung Medical Center and used to develop t...
Guardado en:
Autores principales: | Soo Youn Cho, Jeong Hoon Lee, Jai Min Ryu, Jeong Eon Lee, Eun Yoon Cho, Chang Ho Ahn, Kyunghyun Paeng, Inwan Yoo, Chan-Young Ock, Sang Yong Song |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2b0c21c7490746a88438ccd2e45960e7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Composite risk and benefit from adjuvant dose-dense chemotherapy in hormone receptor-positive breast cancer
por: Fabio Puglisi, et al.
Publicado: (2021) -
Dynamic recurrence risk and adjuvant chemotherapy benefit prediction by ctDNA in resected NSCLC
por: Bin Qiu, et al.
Publicado: (2021) -
Integrative Radiogenomics Approach for Risk Assessment of Postoperative and Adjuvant Chemotherapy Benefits for Gastric Cancer Patients
por: Yin Jin, et al.
Publicado: (2021) -
Application of an open-chamber multi-channel microfluidic device to test chemotherapy drugs
por: Hui-Sung Moon, et al.
Publicado: (2020) -
Tumor Necrosis Factor Family Member Profile Predicts Prognosis and Adjuvant Chemotherapy Benefit for Patients With Small-Cell Lung Cancer
por: Zhihui Zhang, et al.
Publicado: (2021)