Design-Considerations regarding Silicon/Graphite and Tin/Graphite Composite Electrodes for Lithium-Ion Batteries
Abstract An analytical model is proposed to investigate properties of composite electrodes that utilize more than one active material. We demonstrate how the equations can be applied to aid in the design of electrodes by comparing silicon-graphite and tin-graphite composite negative electrodes as ex...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2b0de2a89f314026859b2fd57ca6a6fc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract An analytical model is proposed to investigate properties of composite electrodes that utilize more than one active material. We demonstrate how the equations can be applied to aid in the design of electrodes by comparing silicon-graphite and tin-graphite composite negative electrodes as examples with practical relevance. Based on simple assumptions, the results show how volume expansion tolerance and initial porosity are important factors for the achievable gravimetric and volumetric capacities as well as volumetric energy density. A Si-alloy/graphite composite electrode is used as an experimental system to corroborate the formulated analysis. Kinetic limitations are also addressed based on a novel heuristic approach. |
---|