Direct angiotensin II type 2 receptor stimulation ameliorates insulin resistance in type 2 diabetes mice with PPARγ activation.
<h4>Objectives</h4>The role of angiotensin II type 2 (AT(2)) receptor stimulation in the pathogenesis of insulin resistance is still unclear. Therefore we examined the possibility that direct AT(2) receptor stimulation by compound 21 (C21) might contribute to possible insulin-sensitizing...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2b1a49c707ed426aad42ef0986ee2c79 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | <h4>Objectives</h4>The role of angiotensin II type 2 (AT(2)) receptor stimulation in the pathogenesis of insulin resistance is still unclear. Therefore we examined the possibility that direct AT(2) receptor stimulation by compound 21 (C21) might contribute to possible insulin-sensitizing/anti-diabetic effects in type 2 diabetes (T2DM) with PPARγ activation, mainly focusing on adipose tissue.<h4>Methods</h4>T2DM mice, KK-Ay, were subjected to intraperitoneal injection of C21 and/or a PPARγ antagonist, GW9662 in drinking water for 2 weeks. Insulin resistance was evaluated by oral glucose tolerance test, insulin tolerance test, and uptake of 2-[(3)H] deoxy-D-glucose in white adipose tissue. Morphological changes of adipose tissues as well as adipocyte differentiation and inflammatory response were examined.<h4>Results</h4>Treatment with C21 ameliorated insulin resistance in KK-Ay mice without influencing blood pressure, at least partially through effects on the PPARγ pathway. C21 treatment increased serum adiponectin concentration and decreased TNF-α concentration; however, these effects were attenuated by PPARγ blockade by co-treatment with GW9662. Moreover, we observed that administration of C21 enhanced adipocyte differentiation and PPARγ DNA-binding activity, with a decrease in inflammation in white adipose tissue, whereas these effects of C21 were attenuated by co-treatment with GW9662. We also observed that administration of C21 restored β cell damage in diabetic pancreatic tissue.<h4>Conclusion</h4>The present study demonstrated that direct AT(2) receptor stimulation by C21 accompanied with PPARγ activation ameliorated insulin resistance in T2DM mice, at least partially due to improvement of adipocyte dysfunction and protection of pancreatic β cells. |
---|