Spinorial Snyder and Yang models from superalgebras and noncommutative quantum superspaces

The relativistic Lorentz-covariant quantum space-times obtained by Snyder can be described by the coset generators of (anti) de-Sitter algebras. Similarly, the Lorentz-covariant quantum phase spaces introduced by Yang, which contain additionally quantum curved fourmomenta and quantum-deformed relati...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jerzy Lukierski, Mariusz Woronowicz
Formato: article
Lenguaje:EN
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://doaj.org/article/2b2541eda64246acbc964d2a810d52ea
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The relativistic Lorentz-covariant quantum space-times obtained by Snyder can be described by the coset generators of (anti) de-Sitter algebras. Similarly, the Lorentz-covariant quantum phase spaces introduced by Yang, which contain additionally quantum curved fourmomenta and quantum-deformed relativistic Heisenberg algebra, can be defined by suitably chosen coset generators of conformal algebras. We extend such algebraic construction to the respective superalgebras, which provide quantum Lorentz-covariant superspaces (SUSY Snyder model) and indicate also how to obtain the quantum relativistic phase superspaces (SUSY Yang model). In last Section we recall briefly other ways of deriving quantum phase (super)spaces and we compare the spinorial Snyder type models defining bosonic or fermionic quantum-deformed spinors.