Spinorial Snyder and Yang models from superalgebras and noncommutative quantum superspaces

The relativistic Lorentz-covariant quantum space-times obtained by Snyder can be described by the coset generators of (anti) de-Sitter algebras. Similarly, the Lorentz-covariant quantum phase spaces introduced by Yang, which contain additionally quantum curved fourmomenta and quantum-deformed relati...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jerzy Lukierski, Mariusz Woronowicz
Formato: article
Lenguaje:EN
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://doaj.org/article/2b2541eda64246acbc964d2a810d52ea
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2b2541eda64246acbc964d2a810d52ea
record_format dspace
spelling oai:doaj.org-article:2b2541eda64246acbc964d2a810d52ea2021-12-04T04:32:45ZSpinorial Snyder and Yang models from superalgebras and noncommutative quantum superspaces0370-269310.1016/j.physletb.2021.136783https://doaj.org/article/2b2541eda64246acbc964d2a810d52ea2022-01-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S0370269321007231https://doaj.org/toc/0370-2693The relativistic Lorentz-covariant quantum space-times obtained by Snyder can be described by the coset generators of (anti) de-Sitter algebras. Similarly, the Lorentz-covariant quantum phase spaces introduced by Yang, which contain additionally quantum curved fourmomenta and quantum-deformed relativistic Heisenberg algebra, can be defined by suitably chosen coset generators of conformal algebras. We extend such algebraic construction to the respective superalgebras, which provide quantum Lorentz-covariant superspaces (SUSY Snyder model) and indicate also how to obtain the quantum relativistic phase superspaces (SUSY Yang model). In last Section we recall briefly other ways of deriving quantum phase (super)spaces and we compare the spinorial Snyder type models defining bosonic or fermionic quantum-deformed spinors.Jerzy LukierskiMariusz WoronowiczElsevierarticlePhysicsQC1-999ENPhysics Letters B, Vol 824, Iss , Pp 136783- (2022)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
spellingShingle Physics
QC1-999
Jerzy Lukierski
Mariusz Woronowicz
Spinorial Snyder and Yang models from superalgebras and noncommutative quantum superspaces
description The relativistic Lorentz-covariant quantum space-times obtained by Snyder can be described by the coset generators of (anti) de-Sitter algebras. Similarly, the Lorentz-covariant quantum phase spaces introduced by Yang, which contain additionally quantum curved fourmomenta and quantum-deformed relativistic Heisenberg algebra, can be defined by suitably chosen coset generators of conformal algebras. We extend such algebraic construction to the respective superalgebras, which provide quantum Lorentz-covariant superspaces (SUSY Snyder model) and indicate also how to obtain the quantum relativistic phase superspaces (SUSY Yang model). In last Section we recall briefly other ways of deriving quantum phase (super)spaces and we compare the spinorial Snyder type models defining bosonic or fermionic quantum-deformed spinors.
format article
author Jerzy Lukierski
Mariusz Woronowicz
author_facet Jerzy Lukierski
Mariusz Woronowicz
author_sort Jerzy Lukierski
title Spinorial Snyder and Yang models from superalgebras and noncommutative quantum superspaces
title_short Spinorial Snyder and Yang models from superalgebras and noncommutative quantum superspaces
title_full Spinorial Snyder and Yang models from superalgebras and noncommutative quantum superspaces
title_fullStr Spinorial Snyder and Yang models from superalgebras and noncommutative quantum superspaces
title_full_unstemmed Spinorial Snyder and Yang models from superalgebras and noncommutative quantum superspaces
title_sort spinorial snyder and yang models from superalgebras and noncommutative quantum superspaces
publisher Elsevier
publishDate 2022
url https://doaj.org/article/2b2541eda64246acbc964d2a810d52ea
work_keys_str_mv AT jerzylukierski spinorialsnyderandyangmodelsfromsuperalgebrasandnoncommutativequantumsuperspaces
AT mariuszworonowicz spinorialsnyderandyangmodelsfromsuperalgebrasandnoncommutativequantumsuperspaces
_version_ 1718373020947447808