A novel DOA estimation method for uncorrelated and coherent signals via compressed sensing in sparse arrays
Abstract When there is the coexistence of uncorrelated and coherent signals in sparse arrays, the conventional algorithms using coarray are fail. In order to solve this problem, the letter proposes a novel method based on compressed sensing. Firstly, the authors vectorize the covariance matrix and e...
Guardado en:
Autores principales: | Peng Han, Haiyun Xu, Weijia Cui, Yankui Zhang, Bin Ba |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2b2652b354a74e048850c18639cc39d7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Sparse Automotive MIMO Radar for Super-Resolution Single Snapshot DOA Estimation With Mutual Coupling
por: Navid Amani, et al.
Publicado: (2021) -
A Sliding Window Data Compression Method for Spatial-Time DOA Estimation
por: Pin-Jiao Zhao, et al.
Publicado: (2021) -
Joint Estimation for DOA and Polarization Parameters in Sparse Bayesian Framework
por: Xu Haifeng
Publicado: (2021) -
Complex multitask compressive sensing using Laplace priors
por: Qilei Zhang, et al.
Publicado: (2021) -
Simulated Annealing Assisted Sparse Array Selection Utilizing Deep Learning
por: Steven Wandale, et al.
Publicado: (2021)