KeyMemoryRNN: A Flexible Prediction Framework for Spatiotemporal Prediction Networks
Most previous recurrent neural networks for spatiotemporal prediction have difficulty in learning the long-term spatiotemporal correlations and capturing skip-frame correlations. The reason is that the recurrent neural networks update the memory states only using information from the previous time s...
Guardado en:
Autores principales: | Shengchun Wang, Xiang Lin, Huijie Zhu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2b32dae151a54f3baa0971aa0135b6a9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press
por: Balduíno César Mateus, et al.
Publicado: (2021) -
Two-Stage Spatiotemporal Context Refinement Network for Precipitation Nowcasting
por: Dan Niu, et al.
Publicado: (2021) -
DeepPaSTL: Spatio-Temporal Deep Learning Methods for Predicting Long-Term Pasture Terrains Using Synthetic Datasets
por: Murtaza Rangwala, et al.
Publicado: (2021) -
Prediction of COVID-19 epidemic situation via fine-tuned IndRNN
por: Zhonghua Hong, et al.
Publicado: (2021) -
A Modular Tide Level Prediction Method Based on a NARX Neural Network
por: Wenhao Wu, et al.
Publicado: (2021)