KeyMemoryRNN: A Flexible Prediction Framework for Spatiotemporal Prediction Networks
Most previous recurrent neural networks for spatiotemporal prediction have difficulty in learning the long-term spatiotemporal correlations and capturing skip-frame correlations. The reason is that the recurrent neural networks update the memory states only using information from the previous time s...
Enregistré dans:
Auteurs principaux: | Shengchun Wang, Xiang Lin, Huijie Zhu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/2b32dae151a54f3baa0971aa0135b6a9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press
par: Balduíno César Mateus, et autres
Publié: (2021) -
Two-Stage Spatiotemporal Context Refinement Network for Precipitation Nowcasting
par: Dan Niu, et autres
Publié: (2021) -
DeepPaSTL: Spatio-Temporal Deep Learning Methods for Predicting Long-Term Pasture Terrains Using Synthetic Datasets
par: Murtaza Rangwala, et autres
Publié: (2021) -
Prediction of COVID-19 epidemic situation via fine-tuned IndRNN
par: Zhonghua Hong, et autres
Publié: (2021) -
A Modular Tide Level Prediction Method Based on a NARX Neural Network
par: Wenhao Wu, et autres
Publié: (2021)