Microstructure and Oxidation Behavior of Nb-Si-Based Alloys for Ultrahigh Temperature Applications: A Comprehensive Review
Nb-Si-based superalloys are considered as the most promising high-temperature structural material to replace the Ni-based superalloys. Unfortunately, the poor oxidation resistance is still a major obstacle to the application of Nb-Si-based alloys. Alloying is a promising method to overcome this prob...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2b5bdb8876154f19b992b93b3f3f787e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Nb-Si-based superalloys are considered as the most promising high-temperature structural material to replace the Ni-based superalloys. Unfortunately, the poor oxidation resistance is still a major obstacle to the application of Nb-Si-based alloys. Alloying is a promising method to overcome this problem. In this work, the effects of Hf, Cr, Zr, B, and V on the oxidation resistance of Nb-Si-based superalloys were discussed. Furthermore, the microstructure, phase composition, and oxidation characteristics of Nb-Si series alloys were analyzed. The oxidation reaction and failure mechanism of Nb-Si-based alloys were summarized. The significance of this work is to provide some references for further research on high-temperature niobium alloys. |
---|