Development and validation of artificial intelligence to detect and diagnose liver lesions from ultrasound images.

Artificial intelligence (AI) using a convolutional neural network (CNN) has demonstrated promising performance in radiological analysis. We aimed to develop and validate a CNN for the detection and diagnosis of focal liver lesions (FLLs) from ultrasonography (USG) still images. The CNN was developed...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Thodsawit Tiyarattanachai, Terapap Apiparakoon, Sanparith Marukatat, Sasima Sukcharoen, Nopavut Geratikornsupuk, Nopporn Anukulkarnkusol, Parit Mekaroonkamol, Natthaporn Tanpowpong, Pamornmas Sarakul, Rungsun Rerknimitr, Roongruedee Chaiteerakij
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2b659181f8be4df491eea6c38b6c6b02
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2b659181f8be4df491eea6c38b6c6b02
record_format dspace
spelling oai:doaj.org-article:2b659181f8be4df491eea6c38b6c6b022021-12-02T20:10:58ZDevelopment and validation of artificial intelligence to detect and diagnose liver lesions from ultrasound images.1932-620310.1371/journal.pone.0252882https://doaj.org/article/2b659181f8be4df491eea6c38b6c6b022021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0252882https://doaj.org/toc/1932-6203Artificial intelligence (AI) using a convolutional neural network (CNN) has demonstrated promising performance in radiological analysis. We aimed to develop and validate a CNN for the detection and diagnosis of focal liver lesions (FLLs) from ultrasonography (USG) still images. The CNN was developed with a supervised training method using 40,397 retrospectively collected images from 3,487 patients, including 20,432 FLLs (hepatocellular carcinomas (HCCs), cysts, hemangiomas, focal fatty sparing, and focal fatty infiltration). AI performance was evaluated using an internal test set of 6,191 images with 845 FLLs, then externally validated using 18,922 images with 1,195 FLLs from two additional hospitals. The internal evaluation yielded an overall detection rate, diagnostic sensitivity and specificity of 87.0% (95%CI: 84.3-89.6), 83.9% (95%CI: 80.3-87.4), and 97.1% (95%CI: 96.5-97.7), respectively. The CNN also performed consistently well on external validation cohorts, with a detection rate, diagnostic sensitivity and specificity of 75.0% (95%CI: 71.7-78.3), 84.9% (95%CI: 81.6-88.2), and 97.1% (95%CI: 96.5-97.6), respectively. For diagnosis of HCC, the CNN yielded sensitivity, specificity, and negative predictive value (NPV) of 73.6% (95%CI: 64.3-82.8), 97.8% (95%CI: 96.7-98.9), and 96.5% (95%CI: 95.0-97.9) on the internal test set; and 81.5% (95%CI: 74.2-88.8), 94.4% (95%CI: 92.8-96.0), and 97.4% (95%CI: 96.2-98.5) on the external validation set, respectively. CNN detected and diagnosed common FLLs in USG images with excellent specificity and NPV for HCC. Further development of an AI system for real-time detection and characterization of FLLs in USG is warranted.Thodsawit TiyarattanachaiTerapap ApiparakoonSanparith MarukatatSasima SukcharoenNopavut GeratikornsupukNopporn AnukulkarnkusolParit MekaroonkamolNatthaporn TanpowpongPamornmas SarakulRungsun RerknimitrRoongruedee ChaiteerakijPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 6, p e0252882 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Thodsawit Tiyarattanachai
Terapap Apiparakoon
Sanparith Marukatat
Sasima Sukcharoen
Nopavut Geratikornsupuk
Nopporn Anukulkarnkusol
Parit Mekaroonkamol
Natthaporn Tanpowpong
Pamornmas Sarakul
Rungsun Rerknimitr
Roongruedee Chaiteerakij
Development and validation of artificial intelligence to detect and diagnose liver lesions from ultrasound images.
description Artificial intelligence (AI) using a convolutional neural network (CNN) has demonstrated promising performance in radiological analysis. We aimed to develop and validate a CNN for the detection and diagnosis of focal liver lesions (FLLs) from ultrasonography (USG) still images. The CNN was developed with a supervised training method using 40,397 retrospectively collected images from 3,487 patients, including 20,432 FLLs (hepatocellular carcinomas (HCCs), cysts, hemangiomas, focal fatty sparing, and focal fatty infiltration). AI performance was evaluated using an internal test set of 6,191 images with 845 FLLs, then externally validated using 18,922 images with 1,195 FLLs from two additional hospitals. The internal evaluation yielded an overall detection rate, diagnostic sensitivity and specificity of 87.0% (95%CI: 84.3-89.6), 83.9% (95%CI: 80.3-87.4), and 97.1% (95%CI: 96.5-97.7), respectively. The CNN also performed consistently well on external validation cohorts, with a detection rate, diagnostic sensitivity and specificity of 75.0% (95%CI: 71.7-78.3), 84.9% (95%CI: 81.6-88.2), and 97.1% (95%CI: 96.5-97.6), respectively. For diagnosis of HCC, the CNN yielded sensitivity, specificity, and negative predictive value (NPV) of 73.6% (95%CI: 64.3-82.8), 97.8% (95%CI: 96.7-98.9), and 96.5% (95%CI: 95.0-97.9) on the internal test set; and 81.5% (95%CI: 74.2-88.8), 94.4% (95%CI: 92.8-96.0), and 97.4% (95%CI: 96.2-98.5) on the external validation set, respectively. CNN detected and diagnosed common FLLs in USG images with excellent specificity and NPV for HCC. Further development of an AI system for real-time detection and characterization of FLLs in USG is warranted.
format article
author Thodsawit Tiyarattanachai
Terapap Apiparakoon
Sanparith Marukatat
Sasima Sukcharoen
Nopavut Geratikornsupuk
Nopporn Anukulkarnkusol
Parit Mekaroonkamol
Natthaporn Tanpowpong
Pamornmas Sarakul
Rungsun Rerknimitr
Roongruedee Chaiteerakij
author_facet Thodsawit Tiyarattanachai
Terapap Apiparakoon
Sanparith Marukatat
Sasima Sukcharoen
Nopavut Geratikornsupuk
Nopporn Anukulkarnkusol
Parit Mekaroonkamol
Natthaporn Tanpowpong
Pamornmas Sarakul
Rungsun Rerknimitr
Roongruedee Chaiteerakij
author_sort Thodsawit Tiyarattanachai
title Development and validation of artificial intelligence to detect and diagnose liver lesions from ultrasound images.
title_short Development and validation of artificial intelligence to detect and diagnose liver lesions from ultrasound images.
title_full Development and validation of artificial intelligence to detect and diagnose liver lesions from ultrasound images.
title_fullStr Development and validation of artificial intelligence to detect and diagnose liver lesions from ultrasound images.
title_full_unstemmed Development and validation of artificial intelligence to detect and diagnose liver lesions from ultrasound images.
title_sort development and validation of artificial intelligence to detect and diagnose liver lesions from ultrasound images.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/2b659181f8be4df491eea6c38b6c6b02
work_keys_str_mv AT thodsawittiyarattanachai developmentandvalidationofartificialintelligencetodetectanddiagnoseliverlesionsfromultrasoundimages
AT terapapapiparakoon developmentandvalidationofartificialintelligencetodetectanddiagnoseliverlesionsfromultrasoundimages
AT sanparithmarukatat developmentandvalidationofartificialintelligencetodetectanddiagnoseliverlesionsfromultrasoundimages
AT sasimasukcharoen developmentandvalidationofartificialintelligencetodetectanddiagnoseliverlesionsfromultrasoundimages
AT nopavutgeratikornsupuk developmentandvalidationofartificialintelligencetodetectanddiagnoseliverlesionsfromultrasoundimages
AT noppornanukulkarnkusol developmentandvalidationofartificialintelligencetodetectanddiagnoseliverlesionsfromultrasoundimages
AT paritmekaroonkamol developmentandvalidationofartificialintelligencetodetectanddiagnoseliverlesionsfromultrasoundimages
AT natthaporntanpowpong developmentandvalidationofartificialintelligencetodetectanddiagnoseliverlesionsfromultrasoundimages
AT pamornmassarakul developmentandvalidationofartificialintelligencetodetectanddiagnoseliverlesionsfromultrasoundimages
AT rungsunrerknimitr developmentandvalidationofartificialintelligencetodetectanddiagnoseliverlesionsfromultrasoundimages
AT roongruedeechaiteerakij developmentandvalidationofartificialintelligencetodetectanddiagnoseliverlesionsfromultrasoundimages
_version_ 1718374933860450304