Multi-functional anodes boost the transient power and durability of proton exchange membrane fuel cells
Proton exchange membrane fuel cells often suffer from low lifetimes and high cost. Here, the authors enhance the transient power performance and durability of these fuel cells by integrating a thin layer of tungsten oxide within the anode, which acts as a hydrogen reservoir, oxygen scavenger, and a...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2b6b51cbdd30423faea8aafca0161291 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Proton exchange membrane fuel cells often suffer from low lifetimes and high cost. Here, the authors enhance the transient power performance and durability of these fuel cells by integrating a thin layer of tungsten oxide within the anode, which acts as a hydrogen reservoir, oxygen scavenger, and a regulator for the hydrogen-disassociation reaction. |
---|