Single-cell entropy for accurate estimation of differentiation potency from a cell’s transcriptome
Robust quantification of the differentiation potential of single cells is a task of great importance. Here the authors integrate single-cell RNA-Seq profiles with a cellular interaction network to compute the signaling entropy, and show that it can identify normal and cancer stem-cell phenotypes.
Guardado en:
Autores principales: | Andrew E. Teschendorff, Tariq Enver |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2b700eada7d045eeb538e7f30e6e4773 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Accurate estimation of cell composition in bulk expression through robust integration of single-cell information
por: Brandon Jew, et al.
Publicado: (2020) -
Publisher Correction: Accurate estimation of cell composition in bulk expression through robust integration of single-cell information
por: Brandon Jew, et al.
Publicado: (2020) -
Accurate estimation of cell-type composition from gene expression data
por: Daphne Tsoucas, et al.
Publicado: (2019) -
Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells
por: Stefan Semrau, et al.
Publicado: (2017) -
Transcriptomic entropy benchmarks stem cell-derived cardiomyocyte maturation against endogenous tissue at single cell level.
por: Suraj Kannan, et al.
Publicado: (2021)