Airbnb rental price modeling based on Latent Dirichlet Allocation and MESF-XGBoost composite model

Airbnb price modeling is an important decision-making tool that determines the acceptability and profitability of the service. In this study, we demonstrated how proper descriptions of an Airbnb listing and location could influence determining the prices. We assumed the proper description of a listi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Md Didarul Islam, Bin Li, Kazi Saiful Islam, Rakibul Ahasan, Md. Rimu Mia, Md Emdadul Haque
Formato: article
Lenguaje:EN
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://doaj.org/article/2b79665204014de6b426f581ab48584b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2b79665204014de6b426f581ab48584b
record_format dspace
spelling oai:doaj.org-article:2b79665204014de6b426f581ab48584b2021-11-30T04:17:54ZAirbnb rental price modeling based on Latent Dirichlet Allocation and MESF-XGBoost composite model2666-827010.1016/j.mlwa.2021.100208https://doaj.org/article/2b79665204014de6b426f581ab48584b2022-03-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2666827021001043https://doaj.org/toc/2666-8270Airbnb price modeling is an important decision-making tool that determines the acceptability and profitability of the service. In this study, we demonstrated how proper descriptions of an Airbnb listing and location could influence determining the prices. We assumed the proper description of a listing property positively influences the renter’s decision making; therefore, we applied a Latent Dirichlet Allocation (LDA) based topic model for generating synthetic variables from the textual description of property aiming to improve price prediction accuracy. Additionally, we applied a Moran Eigenvector Spatial Filtering based XGBoost (MESF-XGBoost) model to address the spatial dependence of location data and improve prediction accuracy. Our study at the San Jose County Airbnb dataset found that the number of bedrooms, accommodations, property types, and the total number of reviews positively influence the listing price, whereas the absence of a super host badge and cancellation policy negatively influence the price. The experiment demonstrates that incorporating synthetic variables from both LDA and MESF into the model specification improves the prediction accuracy. The experiment reveals that the XGBoost model with only non-spatial features is not strong enough to address spatial dependence; therefore, it cannot minimize spatial autocorrelation issues.Md Didarul IslamBin LiKazi Saiful IslamRakibul AhasanMd. Rimu MiaMd Emdadul HaqueElsevierarticleMachine LearningLatent Dirichlet AllocationEigenvector Spatial FilteringXGBoostSpatial Data ModelingCyberneticsQ300-390Electronic computers. Computer scienceQA75.5-76.95ENMachine Learning with Applications, Vol 7, Iss , Pp 100208- (2022)
institution DOAJ
collection DOAJ
language EN
topic Machine Learning
Latent Dirichlet Allocation
Eigenvector Spatial Filtering
XGBoost
Spatial Data Modeling
Cybernetics
Q300-390
Electronic computers. Computer science
QA75.5-76.95
spellingShingle Machine Learning
Latent Dirichlet Allocation
Eigenvector Spatial Filtering
XGBoost
Spatial Data Modeling
Cybernetics
Q300-390
Electronic computers. Computer science
QA75.5-76.95
Md Didarul Islam
Bin Li
Kazi Saiful Islam
Rakibul Ahasan
Md. Rimu Mia
Md Emdadul Haque
Airbnb rental price modeling based on Latent Dirichlet Allocation and MESF-XGBoost composite model
description Airbnb price modeling is an important decision-making tool that determines the acceptability and profitability of the service. In this study, we demonstrated how proper descriptions of an Airbnb listing and location could influence determining the prices. We assumed the proper description of a listing property positively influences the renter’s decision making; therefore, we applied a Latent Dirichlet Allocation (LDA) based topic model for generating synthetic variables from the textual description of property aiming to improve price prediction accuracy. Additionally, we applied a Moran Eigenvector Spatial Filtering based XGBoost (MESF-XGBoost) model to address the spatial dependence of location data and improve prediction accuracy. Our study at the San Jose County Airbnb dataset found that the number of bedrooms, accommodations, property types, and the total number of reviews positively influence the listing price, whereas the absence of a super host badge and cancellation policy negatively influence the price. The experiment demonstrates that incorporating synthetic variables from both LDA and MESF into the model specification improves the prediction accuracy. The experiment reveals that the XGBoost model with only non-spatial features is not strong enough to address spatial dependence; therefore, it cannot minimize spatial autocorrelation issues.
format article
author Md Didarul Islam
Bin Li
Kazi Saiful Islam
Rakibul Ahasan
Md. Rimu Mia
Md Emdadul Haque
author_facet Md Didarul Islam
Bin Li
Kazi Saiful Islam
Rakibul Ahasan
Md. Rimu Mia
Md Emdadul Haque
author_sort Md Didarul Islam
title Airbnb rental price modeling based on Latent Dirichlet Allocation and MESF-XGBoost composite model
title_short Airbnb rental price modeling based on Latent Dirichlet Allocation and MESF-XGBoost composite model
title_full Airbnb rental price modeling based on Latent Dirichlet Allocation and MESF-XGBoost composite model
title_fullStr Airbnb rental price modeling based on Latent Dirichlet Allocation and MESF-XGBoost composite model
title_full_unstemmed Airbnb rental price modeling based on Latent Dirichlet Allocation and MESF-XGBoost composite model
title_sort airbnb rental price modeling based on latent dirichlet allocation and mesf-xgboost composite model
publisher Elsevier
publishDate 2022
url https://doaj.org/article/2b79665204014de6b426f581ab48584b
work_keys_str_mv AT mddidarulislam airbnbrentalpricemodelingbasedonlatentdirichletallocationandmesfxgboostcompositemodel
AT binli airbnbrentalpricemodelingbasedonlatentdirichletallocationandmesfxgboostcompositemodel
AT kazisaifulislam airbnbrentalpricemodelingbasedonlatentdirichletallocationandmesfxgboostcompositemodel
AT rakibulahasan airbnbrentalpricemodelingbasedonlatentdirichletallocationandmesfxgboostcompositemodel
AT mdrimumia airbnbrentalpricemodelingbasedonlatentdirichletallocationandmesfxgboostcompositemodel
AT mdemdadulhaque airbnbrentalpricemodelingbasedonlatentdirichletallocationandmesfxgboostcompositemodel
_version_ 1718406734342520832