Rapid Bayesian optimisation for synthesis of short polymer fiber materials

Abstract The discovery of processes for the synthesis of new materials involves many decisions about process design, operation, and material properties. Experimentation is crucial but as complexity increases, exploration of variables can become impractical using traditional combinatorial approaches....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cheng Li, David Rubín de Celis Leal, Santu Rana, Sunil Gupta, Alessandra Sutti, Stewart Greenhill, Teo Slezak, Murray Height, Svetha Venkatesh
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2b7a361eedda4f35898bb1a1a94b8de0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2b7a361eedda4f35898bb1a1a94b8de0
record_format dspace
spelling oai:doaj.org-article:2b7a361eedda4f35898bb1a1a94b8de02021-12-02T12:32:38ZRapid Bayesian optimisation for synthesis of short polymer fiber materials10.1038/s41598-017-05723-02045-2322https://doaj.org/article/2b7a361eedda4f35898bb1a1a94b8de02017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-05723-0https://doaj.org/toc/2045-2322Abstract The discovery of processes for the synthesis of new materials involves many decisions about process design, operation, and material properties. Experimentation is crucial but as complexity increases, exploration of variables can become impractical using traditional combinatorial approaches. We describe an iterative method which uses machine learning to optimise process development, incorporating multiple qualitative and quantitative objectives. We demonstrate the method with a novel fluid processing platform for synthesis of short polymer fibers, and show how the synthesis process can be efficiently directed to achieve material and process objectives.Cheng LiDavid Rubín de Celis LealSantu RanaSunil GuptaAlessandra SuttiStewart GreenhillTeo SlezakMurray HeightSvetha VenkateshNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Cheng Li
David Rubín de Celis Leal
Santu Rana
Sunil Gupta
Alessandra Sutti
Stewart Greenhill
Teo Slezak
Murray Height
Svetha Venkatesh
Rapid Bayesian optimisation for synthesis of short polymer fiber materials
description Abstract The discovery of processes for the synthesis of new materials involves many decisions about process design, operation, and material properties. Experimentation is crucial but as complexity increases, exploration of variables can become impractical using traditional combinatorial approaches. We describe an iterative method which uses machine learning to optimise process development, incorporating multiple qualitative and quantitative objectives. We demonstrate the method with a novel fluid processing platform for synthesis of short polymer fibers, and show how the synthesis process can be efficiently directed to achieve material and process objectives.
format article
author Cheng Li
David Rubín de Celis Leal
Santu Rana
Sunil Gupta
Alessandra Sutti
Stewart Greenhill
Teo Slezak
Murray Height
Svetha Venkatesh
author_facet Cheng Li
David Rubín de Celis Leal
Santu Rana
Sunil Gupta
Alessandra Sutti
Stewart Greenhill
Teo Slezak
Murray Height
Svetha Venkatesh
author_sort Cheng Li
title Rapid Bayesian optimisation for synthesis of short polymer fiber materials
title_short Rapid Bayesian optimisation for synthesis of short polymer fiber materials
title_full Rapid Bayesian optimisation for synthesis of short polymer fiber materials
title_fullStr Rapid Bayesian optimisation for synthesis of short polymer fiber materials
title_full_unstemmed Rapid Bayesian optimisation for synthesis of short polymer fiber materials
title_sort rapid bayesian optimisation for synthesis of short polymer fiber materials
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/2b7a361eedda4f35898bb1a1a94b8de0
work_keys_str_mv AT chengli rapidbayesianoptimisationforsynthesisofshortpolymerfibermaterials
AT davidrubindecelisleal rapidbayesianoptimisationforsynthesisofshortpolymerfibermaterials
AT santurana rapidbayesianoptimisationforsynthesisofshortpolymerfibermaterials
AT sunilgupta rapidbayesianoptimisationforsynthesisofshortpolymerfibermaterials
AT alessandrasutti rapidbayesianoptimisationforsynthesisofshortpolymerfibermaterials
AT stewartgreenhill rapidbayesianoptimisationforsynthesisofshortpolymerfibermaterials
AT teoslezak rapidbayesianoptimisationforsynthesisofshortpolymerfibermaterials
AT murrayheight rapidbayesianoptimisationforsynthesisofshortpolymerfibermaterials
AT svethavenkatesh rapidbayesianoptimisationforsynthesisofshortpolymerfibermaterials
_version_ 1718393968278896640