Rapid Bayesian optimisation for synthesis of short polymer fiber materials
Abstract The discovery of processes for the synthesis of new materials involves many decisions about process design, operation, and material properties. Experimentation is crucial but as complexity increases, exploration of variables can become impractical using traditional combinatorial approaches....
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2b7a361eedda4f35898bb1a1a94b8de0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2b7a361eedda4f35898bb1a1a94b8de0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2b7a361eedda4f35898bb1a1a94b8de02021-12-02T12:32:38ZRapid Bayesian optimisation for synthesis of short polymer fiber materials10.1038/s41598-017-05723-02045-2322https://doaj.org/article/2b7a361eedda4f35898bb1a1a94b8de02017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-05723-0https://doaj.org/toc/2045-2322Abstract The discovery of processes for the synthesis of new materials involves many decisions about process design, operation, and material properties. Experimentation is crucial but as complexity increases, exploration of variables can become impractical using traditional combinatorial approaches. We describe an iterative method which uses machine learning to optimise process development, incorporating multiple qualitative and quantitative objectives. We demonstrate the method with a novel fluid processing platform for synthesis of short polymer fibers, and show how the synthesis process can be efficiently directed to achieve material and process objectives.Cheng LiDavid Rubín de Celis LealSantu RanaSunil GuptaAlessandra SuttiStewart GreenhillTeo SlezakMurray HeightSvetha VenkateshNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Cheng Li David Rubín de Celis Leal Santu Rana Sunil Gupta Alessandra Sutti Stewart Greenhill Teo Slezak Murray Height Svetha Venkatesh Rapid Bayesian optimisation for synthesis of short polymer fiber materials |
description |
Abstract The discovery of processes for the synthesis of new materials involves many decisions about process design, operation, and material properties. Experimentation is crucial but as complexity increases, exploration of variables can become impractical using traditional combinatorial approaches. We describe an iterative method which uses machine learning to optimise process development, incorporating multiple qualitative and quantitative objectives. We demonstrate the method with a novel fluid processing platform for synthesis of short polymer fibers, and show how the synthesis process can be efficiently directed to achieve material and process objectives. |
format |
article |
author |
Cheng Li David Rubín de Celis Leal Santu Rana Sunil Gupta Alessandra Sutti Stewart Greenhill Teo Slezak Murray Height Svetha Venkatesh |
author_facet |
Cheng Li David Rubín de Celis Leal Santu Rana Sunil Gupta Alessandra Sutti Stewart Greenhill Teo Slezak Murray Height Svetha Venkatesh |
author_sort |
Cheng Li |
title |
Rapid Bayesian optimisation for synthesis of short polymer fiber materials |
title_short |
Rapid Bayesian optimisation for synthesis of short polymer fiber materials |
title_full |
Rapid Bayesian optimisation for synthesis of short polymer fiber materials |
title_fullStr |
Rapid Bayesian optimisation for synthesis of short polymer fiber materials |
title_full_unstemmed |
Rapid Bayesian optimisation for synthesis of short polymer fiber materials |
title_sort |
rapid bayesian optimisation for synthesis of short polymer fiber materials |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/2b7a361eedda4f35898bb1a1a94b8de0 |
work_keys_str_mv |
AT chengli rapidbayesianoptimisationforsynthesisofshortpolymerfibermaterials AT davidrubindecelisleal rapidbayesianoptimisationforsynthesisofshortpolymerfibermaterials AT santurana rapidbayesianoptimisationforsynthesisofshortpolymerfibermaterials AT sunilgupta rapidbayesianoptimisationforsynthesisofshortpolymerfibermaterials AT alessandrasutti rapidbayesianoptimisationforsynthesisofshortpolymerfibermaterials AT stewartgreenhill rapidbayesianoptimisationforsynthesisofshortpolymerfibermaterials AT teoslezak rapidbayesianoptimisationforsynthesisofshortpolymerfibermaterials AT murrayheight rapidbayesianoptimisationforsynthesisofshortpolymerfibermaterials AT svethavenkatesh rapidbayesianoptimisationforsynthesisofshortpolymerfibermaterials |
_version_ |
1718393968278896640 |