A Secure Recommendation System for Providing Context-Aware Physical Activity Classification for Users
Advances in Wireless Body Area Networks, where embedded accelerometers, gyroscopes, and other sensors empower users to track real-time health data continuously, have made it easier for users to follow a healthier lifestyle. Various other apps have been intended to choose suitable physical exercise,...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi-Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2b91b2018189448aa9d3ce6f891ce6ca |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2b91b2018189448aa9d3ce6f891ce6ca |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2b91b2018189448aa9d3ce6f891ce6ca2021-11-22T01:10:15ZA Secure Recommendation System for Providing Context-Aware Physical Activity Classification for Users1939-012210.1155/2021/4136909https://doaj.org/article/2b91b2018189448aa9d3ce6f891ce6ca2021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/4136909https://doaj.org/toc/1939-0122Advances in Wireless Body Area Networks, where embedded accelerometers, gyroscopes, and other sensors empower users to track real-time health data continuously, have made it easier for users to follow a healthier lifestyle. Various other apps have been intended to choose suitable physical exercise, depending on the current healthcare environment. A Mobile Application (Mobile App) based recommendation system is a technology that allows users to select an apt activity that might suit their preferences. However, most of the current applications require constant input from end-users and struggle to include those who have hectic schedules or are not dedicated and self-motivated. This research introduces a methodology that uses a “Selective Cluster Cube” recommender system to intelligently monitor and classify user behavior by collecting accelerometer data and synchronizing with its calendar. We suggest customized daily workouts based on historical user and related user habits, interests, physical status, and accessibility. Simultaneously, the exposure of customer requirements to the server is also a significant concern. Developing privacy-preserving protocols with basic cryptographic techniques (e.g., protected multi-party computing or HE) is a standard solution to address privacy issues, but in combination with state-of-the-art advising frameworks, it frequently provides far-reaching solutions. This paper proposes a novel framework, a Privacy Protected Recommendation System (PRIPRO), that employs HE for securing private user data. The PRIPRO model is compared for accuracy and robustness using standard evaluation parameters against three datasets.Sudhakar SenganSubramaniyaswamy VRutvij H. JhaveriVijayakumar VaradarajanRoy SetiawanLogesh RaviHindawi-WileyarticleTechnology (General)T1-995Science (General)Q1-390ENSecurity and Communication Networks, Vol 2021 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Technology (General) T1-995 Science (General) Q1-390 |
spellingShingle |
Technology (General) T1-995 Science (General) Q1-390 Sudhakar Sengan Subramaniyaswamy V Rutvij H. Jhaveri Vijayakumar Varadarajan Roy Setiawan Logesh Ravi A Secure Recommendation System for Providing Context-Aware Physical Activity Classification for Users |
description |
Advances in Wireless Body Area Networks, where embedded accelerometers, gyroscopes, and other sensors empower users to track real-time health data continuously, have made it easier for users to follow a healthier lifestyle. Various other apps have been intended to choose suitable physical exercise, depending on the current healthcare environment. A Mobile Application (Mobile App) based recommendation system is a technology that allows users to select an apt activity that might suit their preferences. However, most of the current applications require constant input from end-users and struggle to include those who have hectic schedules or are not dedicated and self-motivated. This research introduces a methodology that uses a “Selective Cluster Cube” recommender system to intelligently monitor and classify user behavior by collecting accelerometer data and synchronizing with its calendar. We suggest customized daily workouts based on historical user and related user habits, interests, physical status, and accessibility. Simultaneously, the exposure of customer requirements to the server is also a significant concern. Developing privacy-preserving protocols with basic cryptographic techniques (e.g., protected multi-party computing or HE) is a standard solution to address privacy issues, but in combination with state-of-the-art advising frameworks, it frequently provides far-reaching solutions. This paper proposes a novel framework, a Privacy Protected Recommendation System (PRIPRO), that employs HE for securing private user data. The PRIPRO model is compared for accuracy and robustness using standard evaluation parameters against three datasets. |
format |
article |
author |
Sudhakar Sengan Subramaniyaswamy V Rutvij H. Jhaveri Vijayakumar Varadarajan Roy Setiawan Logesh Ravi |
author_facet |
Sudhakar Sengan Subramaniyaswamy V Rutvij H. Jhaveri Vijayakumar Varadarajan Roy Setiawan Logesh Ravi |
author_sort |
Sudhakar Sengan |
title |
A Secure Recommendation System for Providing Context-Aware Physical Activity Classification for Users |
title_short |
A Secure Recommendation System for Providing Context-Aware Physical Activity Classification for Users |
title_full |
A Secure Recommendation System for Providing Context-Aware Physical Activity Classification for Users |
title_fullStr |
A Secure Recommendation System for Providing Context-Aware Physical Activity Classification for Users |
title_full_unstemmed |
A Secure Recommendation System for Providing Context-Aware Physical Activity Classification for Users |
title_sort |
secure recommendation system for providing context-aware physical activity classification for users |
publisher |
Hindawi-Wiley |
publishDate |
2021 |
url |
https://doaj.org/article/2b91b2018189448aa9d3ce6f891ce6ca |
work_keys_str_mv |
AT sudhakarsengan asecurerecommendationsystemforprovidingcontextawarephysicalactivityclassificationforusers AT subramaniyaswamyv asecurerecommendationsystemforprovidingcontextawarephysicalactivityclassificationforusers AT rutvijhjhaveri asecurerecommendationsystemforprovidingcontextawarephysicalactivityclassificationforusers AT vijayakumarvaradarajan asecurerecommendationsystemforprovidingcontextawarephysicalactivityclassificationforusers AT roysetiawan asecurerecommendationsystemforprovidingcontextawarephysicalactivityclassificationforusers AT logeshravi asecurerecommendationsystemforprovidingcontextawarephysicalactivityclassificationforusers AT sudhakarsengan securerecommendationsystemforprovidingcontextawarephysicalactivityclassificationforusers AT subramaniyaswamyv securerecommendationsystemforprovidingcontextawarephysicalactivityclassificationforusers AT rutvijhjhaveri securerecommendationsystemforprovidingcontextawarephysicalactivityclassificationforusers AT vijayakumarvaradarajan securerecommendationsystemforprovidingcontextawarephysicalactivityclassificationforusers AT roysetiawan securerecommendationsystemforprovidingcontextawarephysicalactivityclassificationforusers AT logeshravi securerecommendationsystemforprovidingcontextawarephysicalactivityclassificationforusers |
_version_ |
1718418330191134720 |