Suspended sediment load prediction in consecutive stations of river based on ensemble pre-post-processing kernel based approaches
Sediment transportation and accurate estimation of its rate is a significant issue for river engineers and researchers. In this study, the capability of kernel based approaches including Kernel Extreme Learning Machine (KELM) and Gaussian Process Regression (GPR) was assessed for predicting the rive...
Guardado en:
Autores principales: | Roghayeh Ghasempour, Kiyoumars Roushangar, Parveen Sihag |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2ba8041bcf2c43f596107aabd15310a2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A comparative study of wavelet and empirical mode decomposition-based GPR models for river discharge relationship modeling at consecutive hydrometric stations
por: Kiyoumars Roushangar, et al.
Publicado: (2021) -
The potential of ensemble WT-EEMD-kernel extreme learning machine techniques for prediction suspended sediment concentration in successive points of a river
por: Kiyoumars Roushangar, et al.
Publicado: (2021) -
Suspended sediment input from crushed-stone ford construction on the Canadian Shield in Quebec
por: Karelle Gilbert, et al.
Publicado: (2021) -
Factors Controlling Contemporary Suspended Sediment Yield in the Caucasus Region
por: Valentin Golosov, et al.
Publicado: (2021) -
EEMD- and VMD-based hybrid GPR models for river streamflow point and interval predictions
por: Roghayeh Ghasempour, et al.
Publicado: (2021)