A deep learning integrated radiomics model for identification of coronavirus disease 2019 using computed tomography
Abstract Since its first outbreak, Coronavirus Disease 2019 (COVID-19) has been rapidly spreading worldwide and caused a global pandemic. Rapid and early detection is essential to contain COVID-19. Here, we first developed a deep learning (DL) integrated radiomics model for end-to-end identification...
Guardado en:
Autores principales: | Xiaoguo Zhang, Dawei Wang, Jiang Shao, Song Tian, Weixiong Tan, Yan Ma, Qingnan Xu, Xiaoman Ma, Dasheng Li, Jun Chai, Dingjun Wang, Wenwen Liu, Lingbo Lin, Jiangfen Wu, Chen Xia, Zhongfa Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2bba194f8c524411b02bf0aa9361d075 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Diagnostic classification of coronavirus disease 2019 (COVID-19) and other pneumonias using radiomics features in CT chest images
por: Ning Yang, et al.
Publicado: (2021) -
Feasibility of Radiomics to Differentiate Coronavirus Disease 2019 (COVID-19) from H1N1 Influenza Pneumonia on Chest Computed Tomography: A Proof of Concept
por: Mohsen Tabatabaei, et al.
Publicado: (2021) -
Novel deep learning radiomics model for preoperative evaluation of hepatocellular carcinoma differentiation based on computed tomography data
por: Yong Ding, et al.
Publicado: (2021) -
A Computed Tomography Radiomics-Based Prediction Model on Interstitial Lung Disease in Anti-MDA5-Positive Dermatomyositis
por: Wenwen Xu, et al.
Publicado: (2021) -
A radiomics approach for automated diagnosis of ovarian neoplasm malignancy in computed tomography
por: Shiyun Li, et al.
Publicado: (2021)