Big-data Management using Map Reduce on Cloud: Case study, EEG Images' Data

Database is characterized as an arrangement of data that is sorted out and disseminated in a way that allows the client to get to the data being put away in a simple and more helpful way. However, in the era of big-data the traditional methods of data analytics may not be able to manage and process...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Sahar Mahdie Klim
Formato: article
Lenguaje:EN
Publicado: Al-Khwarizmi College of Engineering – University of Baghdad 2017
Materias:
Acceso en línea:https://doaj.org/article/2bc6d2b62dd1425f9a57285666653afd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Database is characterized as an arrangement of data that is sorted out and disseminated in a way that allows the client to get to the data being put away in a simple and more helpful way. However, in the era of big-data the traditional methods of data analytics may not be able to manage and process the large amount of data. In order to develop an efficient way of handling big-data, this work studies the use of Map-Reduce technique to handle big-data distributed on the cloud. This approach was evaluated using Hadoop server and applied on EEG Big-data as a case study. The proposed approach showed clear enhancement for managing and processing the EEG Big-data with average of 50% reduction on response time. The obtained results provide EEG researchers and specialist with an easy and fast method of handling the EEG big data.