A two‐stage neural network prediction of chronic kidney disease
Abstract Accurate detection of chronic kidney disease (CKD) plays a pivotal role in early diagnosis and treatment. Measured glomerular filtration rate (mGFR) is considered the benchmark indicator in measuring the kidney function. However, due to the high resource cost of measuring mGFR, it is usuall...
Guardado en:
Autores principales: | Hongquan Peng, Haibin Zhu, Chi Wa Ao Ieong, Tao Tao, Tsung Yang Tsai, Zhi Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2bc7a33df5da469f899c68063f4b7664 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Chronic Kidney Disease Diagnosis System using Sequential Backward Feature Selection and Artificial Neural Network
por: Noor Chotimah Siti, et al.
Publicado: (2021) -
A weighted patient network-based framework for predicting chronic diseases using graph neural networks
por: Haohui Lu, et al.
Publicado: (2021) -
Deep neural networks for accurate predictions of crystal stability
por: Weike Ye, et al.
Publicado: (2018) -
Performance analysis of a two-stage travelling-wave thermo-acoustic engine using Artificial Neural Network
por: Ngcukayitobi Miniyenkosi, et al.
Publicado: (2021) -
Self-Attention-Guided Recurrent Neural Network and Motion Perception for Intelligent Prediction of Chronic Diseases
por: Baojuan Ma, et al.
Publicado: (2021)