Combining radiomic phenotypes of non-small cell lung cancer with liquid biopsy data may improve prediction of response to EGFR inhibitors

Abstract Among non-small cell lung cancer (NSCLC) patients with therapeutically targetable tumor mutations in epidermal growth factor receptor (EGFR), not all patients respond to targeted therapy. Combining circulating-tumor DNA (ctDNA), clinical variables, and radiomic phenotypes may improve predic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bardia Yousefi, Michael J. LaRiviere, Eric A. Cohen, Thomas H. Buckingham, Stephanie S. Yee, Taylor A. Black, Austin L. Chien, Peter Noël, Wei-Ting Hwang, Sharyn I. Katz, Charu Aggarwal, Jeffrey C. Thompson, Erica L. Carpenter, Despina Kontos
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2bc9f76cb0c2446eb992e36476f5b7bf
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2bc9f76cb0c2446eb992e36476f5b7bf
record_format dspace
spelling oai:doaj.org-article:2bc9f76cb0c2446eb992e36476f5b7bf2021-12-02T14:35:53ZCombining radiomic phenotypes of non-small cell lung cancer with liquid biopsy data may improve prediction of response to EGFR inhibitors10.1038/s41598-021-88239-y2045-2322https://doaj.org/article/2bc9f76cb0c2446eb992e36476f5b7bf2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-88239-yhttps://doaj.org/toc/2045-2322Abstract Among non-small cell lung cancer (NSCLC) patients with therapeutically targetable tumor mutations in epidermal growth factor receptor (EGFR), not all patients respond to targeted therapy. Combining circulating-tumor DNA (ctDNA), clinical variables, and radiomic phenotypes may improve prediction of EGFR-targeted therapy outcomes for NSCLC. This single-center retrospective study included 40 EGFR-mutant advanced NSCLC patients treated with EGFR-targeted therapy. ctDNA data included number of mutations and detection of EGFR T790M. Clinical data included age, smoking status, and ECOG performance status. Baseline chest CT scans were analyzed to extract 429 radiomic features from each primary tumor. Unsupervised hierarchical clustering was used to group tumors into phenotypes. Kaplan–Meier (K–M) curves and Cox proportional hazards regression were modeled for progression-free survival (PFS) and overall survival (OS). Likelihood ratio test (LRT) was used to compare fit between models. Among 40 patients (73% women, median age 62 years), consensus clustering identified two radiomic phenotypes. For PFS, the model combining radiomic phenotypes with ctDNA and clinical variables had c-statistic of 0.77 and a better fit (LRT p = 0.01) than the model with clinical and ctDNA variables alone with a c-statistic of 0.73. For OS, adding radiomic phenotypes resulted in c-statistic of 0.83 versus 0.80 when using clinical and ctDNA variables (LRT p = 0.08). Both models showed separation of K–M curves dichotomized by median prognostic score (p < 0.005). Combining radiomic phenotypes, ctDNA, and clinical variables may enhance precision oncology approaches to managing advanced non-small cell lung cancer with EGFR mutations.Bardia YousefiMichael J. LaRiviereEric A. CohenThomas H. BuckinghamStephanie S. YeeTaylor A. BlackAustin L. ChienPeter NoëlWei-Ting HwangSharyn I. KatzCharu AggarwalJeffrey C. ThompsonErica L. CarpenterDespina KontosNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Bardia Yousefi
Michael J. LaRiviere
Eric A. Cohen
Thomas H. Buckingham
Stephanie S. Yee
Taylor A. Black
Austin L. Chien
Peter Noël
Wei-Ting Hwang
Sharyn I. Katz
Charu Aggarwal
Jeffrey C. Thompson
Erica L. Carpenter
Despina Kontos
Combining radiomic phenotypes of non-small cell lung cancer with liquid biopsy data may improve prediction of response to EGFR inhibitors
description Abstract Among non-small cell lung cancer (NSCLC) patients with therapeutically targetable tumor mutations in epidermal growth factor receptor (EGFR), not all patients respond to targeted therapy. Combining circulating-tumor DNA (ctDNA), clinical variables, and radiomic phenotypes may improve prediction of EGFR-targeted therapy outcomes for NSCLC. This single-center retrospective study included 40 EGFR-mutant advanced NSCLC patients treated with EGFR-targeted therapy. ctDNA data included number of mutations and detection of EGFR T790M. Clinical data included age, smoking status, and ECOG performance status. Baseline chest CT scans were analyzed to extract 429 radiomic features from each primary tumor. Unsupervised hierarchical clustering was used to group tumors into phenotypes. Kaplan–Meier (K–M) curves and Cox proportional hazards regression were modeled for progression-free survival (PFS) and overall survival (OS). Likelihood ratio test (LRT) was used to compare fit between models. Among 40 patients (73% women, median age 62 years), consensus clustering identified two radiomic phenotypes. For PFS, the model combining radiomic phenotypes with ctDNA and clinical variables had c-statistic of 0.77 and a better fit (LRT p = 0.01) than the model with clinical and ctDNA variables alone with a c-statistic of 0.73. For OS, adding radiomic phenotypes resulted in c-statistic of 0.83 versus 0.80 when using clinical and ctDNA variables (LRT p = 0.08). Both models showed separation of K–M curves dichotomized by median prognostic score (p < 0.005). Combining radiomic phenotypes, ctDNA, and clinical variables may enhance precision oncology approaches to managing advanced non-small cell lung cancer with EGFR mutations.
format article
author Bardia Yousefi
Michael J. LaRiviere
Eric A. Cohen
Thomas H. Buckingham
Stephanie S. Yee
Taylor A. Black
Austin L. Chien
Peter Noël
Wei-Ting Hwang
Sharyn I. Katz
Charu Aggarwal
Jeffrey C. Thompson
Erica L. Carpenter
Despina Kontos
author_facet Bardia Yousefi
Michael J. LaRiviere
Eric A. Cohen
Thomas H. Buckingham
Stephanie S. Yee
Taylor A. Black
Austin L. Chien
Peter Noël
Wei-Ting Hwang
Sharyn I. Katz
Charu Aggarwal
Jeffrey C. Thompson
Erica L. Carpenter
Despina Kontos
author_sort Bardia Yousefi
title Combining radiomic phenotypes of non-small cell lung cancer with liquid biopsy data may improve prediction of response to EGFR inhibitors
title_short Combining radiomic phenotypes of non-small cell lung cancer with liquid biopsy data may improve prediction of response to EGFR inhibitors
title_full Combining radiomic phenotypes of non-small cell lung cancer with liquid biopsy data may improve prediction of response to EGFR inhibitors
title_fullStr Combining radiomic phenotypes of non-small cell lung cancer with liquid biopsy data may improve prediction of response to EGFR inhibitors
title_full_unstemmed Combining radiomic phenotypes of non-small cell lung cancer with liquid biopsy data may improve prediction of response to EGFR inhibitors
title_sort combining radiomic phenotypes of non-small cell lung cancer with liquid biopsy data may improve prediction of response to egfr inhibitors
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/2bc9f76cb0c2446eb992e36476f5b7bf
work_keys_str_mv AT bardiayousefi combiningradiomicphenotypesofnonsmallcelllungcancerwithliquidbiopsydatamayimprovepredictionofresponsetoegfrinhibitors
AT michaeljlariviere combiningradiomicphenotypesofnonsmallcelllungcancerwithliquidbiopsydatamayimprovepredictionofresponsetoegfrinhibitors
AT ericacohen combiningradiomicphenotypesofnonsmallcelllungcancerwithliquidbiopsydatamayimprovepredictionofresponsetoegfrinhibitors
AT thomashbuckingham combiningradiomicphenotypesofnonsmallcelllungcancerwithliquidbiopsydatamayimprovepredictionofresponsetoegfrinhibitors
AT stephaniesyee combiningradiomicphenotypesofnonsmallcelllungcancerwithliquidbiopsydatamayimprovepredictionofresponsetoegfrinhibitors
AT taylorablack combiningradiomicphenotypesofnonsmallcelllungcancerwithliquidbiopsydatamayimprovepredictionofresponsetoegfrinhibitors
AT austinlchien combiningradiomicphenotypesofnonsmallcelllungcancerwithliquidbiopsydatamayimprovepredictionofresponsetoegfrinhibitors
AT peternoel combiningradiomicphenotypesofnonsmallcelllungcancerwithliquidbiopsydatamayimprovepredictionofresponsetoegfrinhibitors
AT weitinghwang combiningradiomicphenotypesofnonsmallcelllungcancerwithliquidbiopsydatamayimprovepredictionofresponsetoegfrinhibitors
AT sharynikatz combiningradiomicphenotypesofnonsmallcelllungcancerwithliquidbiopsydatamayimprovepredictionofresponsetoegfrinhibitors
AT charuaggarwal combiningradiomicphenotypesofnonsmallcelllungcancerwithliquidbiopsydatamayimprovepredictionofresponsetoegfrinhibitors
AT jeffreycthompson combiningradiomicphenotypesofnonsmallcelllungcancerwithliquidbiopsydatamayimprovepredictionofresponsetoegfrinhibitors
AT ericalcarpenter combiningradiomicphenotypesofnonsmallcelllungcancerwithliquidbiopsydatamayimprovepredictionofresponsetoegfrinhibitors
AT despinakontos combiningradiomicphenotypesofnonsmallcelllungcancerwithliquidbiopsydatamayimprovepredictionofresponsetoegfrinhibitors
_version_ 1718390998256582656