Transition from Anomalous Hall Effect to Topological Hall Effect in Hexagonal Non-Collinear Magnet Mn3Ga

Abstract We report experimental observation of large anomalous Hall effect exhibited in non-collinear triangular antiferromagnet D019-type Mn3Ga with coplanar spin structure at temperatures higher than 100 K. The value of anomalous Hall resistivity increases with increasing temperature, which reache...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Z. H. Liu, Y. J. Zhang, G. D. Liu, B. Ding, E. K. Liu, Hasnain Mehdi Jafri, Z. P. Hou, W. H. Wang, X. Q. Ma, G. H. Wu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2bcc723654974e58b27c5545384d7c49
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract We report experimental observation of large anomalous Hall effect exhibited in non-collinear triangular antiferromagnet D019-type Mn3Ga with coplanar spin structure at temperatures higher than 100 K. The value of anomalous Hall resistivity increases with increasing temperature, which reaches 1.25 μΩ · cm at a low field of ~300 Oe at room temperature. The corresponding room-temperature anomalous Hall conductivity is about 17 (Ω · cm)−1. Most interestingly, as temperature falls below 100 K, a temperature-independent topological-like Hall effect was observed. The maximum peak value of topological Hall resistivity is about 0.255 μΩ · cm. The appearance of the topological Hall effect is attributed to the change of spin texture as a result of weak structural distortion from hexagonal to orthorhombic symmetry in Mn3Ga. Present study suggests that Mn3Ga shows promising possibility to be antiferromagnetic spintronics or topological Hall effect-based data storage devices.