Spatiotemporal tracing of pandemic spread from infection data
Abstract COVID-19, a global pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 virus, has claimed millions of lives worldwide. Amid soaring contagion due to newer strains of the virus, it is imperative to design dynamic, spatiotemporal models to contain the spread of infection du...
Enregistré dans:
Auteurs principaux: | Satyaki Roy, Preetom Biswas, Preetam Ghosh |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/2bdc85663e6a40b5b67ece41f7ab6048 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Spatiotemporal contact density explains the disparity of COVID-19 spread in urban neighborhoods
par: Rajat Verma, et autres
Publié: (2021) -
Heterogeneous interventions reduce the spread of COVID-19 in simulations on real mobility data
par: Haotian Wang, et autres
Publié: (2021) -
Effects of social distancing on the spreading of COVID-19 inferred from mobile phone data
par: Hamid Khataee, et autres
Publié: (2021) -
Dynamics based on analysis of public data for spreading of disease
par: Leonardo S. Lima
Publié: (2021) -
Revealing fine-scale spatiotemporal differences in SARS-CoV-2 introduction and spread
par: Gage K. Moreno, et autres
Publié: (2020)