Electrophoretic Codeposition of MoOx/MoS2 Thin Film for Platinum-Free Counter Electrode in Quantum Dot Solar Cells
The MoOx/MoS2 thin films were manufactured on conducting glass (FTO) from the ethanolic mixture of colloidal molybdenum disulfide (MoS2) and molybdenum oxides (MoOx) by electrophoretic deposition method and were used for counter electrode of quantum dot solar cells. Different ramp-rate conditions fo...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2c088f79dd8c4cb1b740177cd6b724b0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The MoOx/MoS2 thin films were manufactured on conducting glass (FTO) from the ethanolic mixture of colloidal molybdenum disulfide (MoS2) and molybdenum oxides (MoOx) by electrophoretic deposition method and were used for counter electrode of quantum dot solar cells. Different ramp-rate conditions for electrophoretic deposition as well as bias potential were investigated in an attempt to get the highest possible electrocatalytic activity of polysulfide (S2-/Sn2-) redox couple. In this research, interestingly, by simply using CdS/CdSe/ZnS photoanode and polysulfide electrolyte under 1000 W.m−2 AM 1.5 G illumination, the power conversion efficiency of MoOx/MoS2-counter-electrode-based QDSC was achieved up to 2.01%, which was double compared to platinum-based counter electrode of QDSCs. |
---|