New criteria-based ℋ-tensors for identifying the positive definiteness of multivariate homogeneous forms

Positive definite polynomials are important in the field of optimization. ℋ-tensors play an important role in identifing the positive definiteness of an even-order homogeneous multivariate form. In this paper, we propose an iterative scheme for identifying ℋ-tensor and prove that the algorithm can t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sun Deshu, Bai Dongjian
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/2c12dc690d4b4853b36f71cd68e037a7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2c12dc690d4b4853b36f71cd68e037a7
record_format dspace
spelling oai:doaj.org-article:2c12dc690d4b4853b36f71cd68e037a72021-12-05T14:10:53ZNew criteria-based ℋ-tensors for identifying the positive definiteness of multivariate homogeneous forms2391-545510.1515/math-2021-0042https://doaj.org/article/2c12dc690d4b4853b36f71cd68e037a72021-07-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0042https://doaj.org/toc/2391-5455Positive definite polynomials are important in the field of optimization. ℋ-tensors play an important role in identifing the positive definiteness of an even-order homogeneous multivariate form. In this paper, we propose an iterative scheme for identifying ℋ-tensor and prove that the algorithm can terminate within finite iterative steps. Some numerical examples are provided to illustrate the efficiency and validity of methods.Sun DeshuBai DongjianDe Gruyterarticlepositive definitenesshomogeneous multivariate formℋ-tensorsgeneralized diagonal dominanceiterative scheme15a6915a1865f1565h17MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 551-561 (2021)
institution DOAJ
collection DOAJ
language EN
topic positive definiteness
homogeneous multivariate form
ℋ-tensors
generalized diagonal dominance
iterative scheme
15a69
15a18
65f15
65h17
Mathematics
QA1-939
spellingShingle positive definiteness
homogeneous multivariate form
ℋ-tensors
generalized diagonal dominance
iterative scheme
15a69
15a18
65f15
65h17
Mathematics
QA1-939
Sun Deshu
Bai Dongjian
New criteria-based ℋ-tensors for identifying the positive definiteness of multivariate homogeneous forms
description Positive definite polynomials are important in the field of optimization. ℋ-tensors play an important role in identifing the positive definiteness of an even-order homogeneous multivariate form. In this paper, we propose an iterative scheme for identifying ℋ-tensor and prove that the algorithm can terminate within finite iterative steps. Some numerical examples are provided to illustrate the efficiency and validity of methods.
format article
author Sun Deshu
Bai Dongjian
author_facet Sun Deshu
Bai Dongjian
author_sort Sun Deshu
title New criteria-based ℋ-tensors for identifying the positive definiteness of multivariate homogeneous forms
title_short New criteria-based ℋ-tensors for identifying the positive definiteness of multivariate homogeneous forms
title_full New criteria-based ℋ-tensors for identifying the positive definiteness of multivariate homogeneous forms
title_fullStr New criteria-based ℋ-tensors for identifying the positive definiteness of multivariate homogeneous forms
title_full_unstemmed New criteria-based ℋ-tensors for identifying the positive definiteness of multivariate homogeneous forms
title_sort new criteria-based ℋ-tensors for identifying the positive definiteness of multivariate homogeneous forms
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/2c12dc690d4b4853b36f71cd68e037a7
work_keys_str_mv AT sundeshu newcriteriabasedhtensorsforidentifyingthepositivedefinitenessofmultivariatehomogeneousforms
AT baidongjian newcriteriabasedhtensorsforidentifyingthepositivedefinitenessofmultivariatehomogeneousforms
_version_ 1718371593028108288