Aqueous humor dynamics in human eye: A lattice Boltzmann study
This paper presents a lattice Boltzmann model to simulate the aqueous humor (AH) dynamics in the human eye by involving incompressible Navier-Stokes flow, heat convection and diffusion, and Darcy seepage flow. Verifying simulations indicate that the model is stable, convergent and robust. Further in...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2c13e3e136394834b982382b5eaf604f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2c13e3e136394834b982382b5eaf604f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2c13e3e136394834b982382b5eaf604f2021-11-08T03:04:57ZAqueous humor dynamics in human eye: A lattice Boltzmann study10.3934/mbe.20212551551-0018https://doaj.org/article/2c13e3e136394834b982382b5eaf604f2021-06-01T00:00:00Zhttps://www.aimspress.com/article/doi/10.3934/mbe.2021255?viewType=HTMLhttps://doaj.org/toc/1551-0018This paper presents a lattice Boltzmann model to simulate the aqueous humor (AH) dynamics in the human eye by involving incompressible Navier-Stokes flow, heat convection and diffusion, and Darcy seepage flow. Verifying simulations indicate that the model is stable, convergent and robust. Further investigations were carried out, including the effects of heat convection and buoyancy, AH production rate, permeability of trabecular meshwork, viscosity of AH and anterior chamber angle on intraocular pressure (IOP). The heat convection and diffusion can significantly affect the flow patterns in the healthy eye, and the IOP can be controlled by increasing the anterior chamber angle or decreasing the secretion rate, the drainage resistance and viscosity of AH. However, the IOP is insensitive to the viscosity of AH, which may be one of the causes that the viscosity would not have been considered as a factor for controlling the IOP. It's interesting that all these factors have more significant influences on the IOP in pathologic eye than healthy one. The temperature difference and the eye-orientation have obvious influence on the cornea and iris wall shear stresses. The present model and simulation results are expected to provide an alternative tool and theoretical reference for the study of AH dynamics.Zhangrong QinLingjuan MengFan YangChaoying ZhangBinghai WenAIMS Pressarticlelattice boltzmann methodaqueous humor dynamicsincompressible navier-stokes equationconvection diffusion equationdarcy equationboussinesq approximationBiotechnologyTP248.13-248.65MathematicsQA1-939ENMathematical Biosciences and Engineering, Vol 18, Iss 5, Pp 5006-5028 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
lattice boltzmann method aqueous humor dynamics incompressible navier-stokes equation convection diffusion equation darcy equation boussinesq approximation Biotechnology TP248.13-248.65 Mathematics QA1-939 |
spellingShingle |
lattice boltzmann method aqueous humor dynamics incompressible navier-stokes equation convection diffusion equation darcy equation boussinesq approximation Biotechnology TP248.13-248.65 Mathematics QA1-939 Zhangrong Qin Lingjuan Meng Fan Yang Chaoying Zhang Binghai Wen Aqueous humor dynamics in human eye: A lattice Boltzmann study |
description |
This paper presents a lattice Boltzmann model to simulate the aqueous humor (AH) dynamics in the human eye by involving incompressible Navier-Stokes flow, heat convection and diffusion, and Darcy seepage flow. Verifying simulations indicate that the model is stable, convergent and robust. Further investigations were carried out, including the effects of heat convection and buoyancy, AH production rate, permeability of trabecular meshwork, viscosity of AH and anterior chamber angle on intraocular pressure (IOP). The heat convection and diffusion can significantly affect the flow patterns in the healthy eye, and the IOP can be controlled by increasing the anterior chamber angle or decreasing the secretion rate, the drainage resistance and viscosity of AH. However, the IOP is insensitive to the viscosity of AH, which may be one of the causes that the viscosity would not have been considered as a factor for controlling the IOP. It's interesting that all these factors have more significant influences on the IOP in pathologic eye than healthy one. The temperature difference and the eye-orientation have obvious influence on the cornea and iris wall shear stresses. The present model and simulation results are expected to provide an alternative tool and theoretical reference for the study of AH dynamics. |
format |
article |
author |
Zhangrong Qin Lingjuan Meng Fan Yang Chaoying Zhang Binghai Wen |
author_facet |
Zhangrong Qin Lingjuan Meng Fan Yang Chaoying Zhang Binghai Wen |
author_sort |
Zhangrong Qin |
title |
Aqueous humor dynamics in human eye: A lattice Boltzmann study |
title_short |
Aqueous humor dynamics in human eye: A lattice Boltzmann study |
title_full |
Aqueous humor dynamics in human eye: A lattice Boltzmann study |
title_fullStr |
Aqueous humor dynamics in human eye: A lattice Boltzmann study |
title_full_unstemmed |
Aqueous humor dynamics in human eye: A lattice Boltzmann study |
title_sort |
aqueous humor dynamics in human eye: a lattice boltzmann study |
publisher |
AIMS Press |
publishDate |
2021 |
url |
https://doaj.org/article/2c13e3e136394834b982382b5eaf604f |
work_keys_str_mv |
AT zhangrongqin aqueoushumordynamicsinhumaneyealatticeboltzmannstudy AT lingjuanmeng aqueoushumordynamicsinhumaneyealatticeboltzmannstudy AT fanyang aqueoushumordynamicsinhumaneyealatticeboltzmannstudy AT chaoyingzhang aqueoushumordynamicsinhumaneyealatticeboltzmannstudy AT binghaiwen aqueoushumordynamicsinhumaneyealatticeboltzmannstudy |
_version_ |
1718442984911929344 |