Data Augmentasi Untuk Mengatasi Keterbatasan Data Pada Model Penerjemah Bahasa Isyarat Indonesia (BISINDO)
Ada dua sistem bahasa isyarat yang digunakan di Indonesia; Sistem Isyarat Bahasa Indonesia (SIBI) dan Bahasa Isyarat Indonesia (Bisindo). Penggunaan bahasa isyarat di kelompok masyarakat tuli dan difabel rungu di Indonesia masih terpecah. Pemerintah mewajibkan penggunaan SIBI sebagai bahasa penganta...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | ID |
Publicado: |
Universitas Bina Sarana Informatika, LPPM
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2c23b986ec7c4b8e99a59edeb284a622 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Ada dua sistem bahasa isyarat yang digunakan di Indonesia; Sistem Isyarat Bahasa Indonesia (SIBI) dan Bahasa Isyarat Indonesia (Bisindo). Penggunaan bahasa isyarat di kelompok masyarakat tuli dan difabel rungu di Indonesia masih terpecah. Pemerintah mewajibkan penggunaan SIBI sebagai bahasa pengantar resmi di Sekolah Luar Biasa namun insan rungu Indonesia lebih gemar menggunakan Bisindo. Hal ini dikarenakan Bisindo memiliki akar kata yang berasal dari Bahasa Indonesia dan satu gerakan mewakili kata. Tidak seperti SIBI yang menggunakan gerakan isyarat berdasarkan tata bahasa orang mendengar. Gerakan untuk Kesejahteraan Tunarungu Indonesia (Gerkatin) telah meminta pemerintah untuk mengakui Bisindo sebagai bahasa pengantar resmi di Sekolah Luar Biasa namun upaya ini hingga kini belum berhasil. Upaya lain yang dilakukan Gerkatin adalah memberikan kelas pelatihan Bisindo bagi masyarakat umum membantu meningkatkan aksesibilitas Tuli dengan menambah jumlah penerjemah serta memperluas pemahaman Bisindo di masyarakat luas. Penelitian ini mencoba mendukung upaya tersebut dengan mengembangkan model penerjemah Bisindo yang menerjemahkan gestur bahasa isyarat menjadi teks menggunakan pendekatan machine learning dengan arsitektur Convolutional Neural Network (CNN). Keterbatasan dataset Bisindo diatasi dengan melakukan data augmentation. Performa model mencapai nilai akurasi sebesar 94.38%. |
---|