Software defect prediction using hybrid model (CBIL) of convolutional neural network (CNN) and bidirectional long short-term memory (Bi-LSTM)
In recent years, the software industry has invested substantial effort to improve software quality in organizations. Applying proactive software defect prediction will help developers and white box testers to find the defects earlier, and this will reduce the time and effort. Traditional software de...
Guardado en:
Autores principales: | Ahmed Bahaa Farid, Enas Mohamed Fathy, Ahmed Sharaf Eldin, Laila A. Abd-Elmegid |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2c247fe8e5db4cf1a34df6acf36a648e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic Unsupervised Fabric Defect Detection Based on Self-Feature Comparison
por: Zhengrui Peng, et al.
Publicado: (2021) -
Deep Convolutional Neural Network Optimization for Defect Detection in Fabric Inspection
por: Chao-Ching Ho, et al.
Publicado: (2021) -
Chip Appearance Defect Recognition Based on Convolutional Neural Network
por: Jun Wang, et al.
Publicado: (2021) -
Multi-view learning for software defect prediction
por: Elife Ozturk Kiyak, et al.
Publicado: (2021) -
Deep Bidirectional LSTM Network Learning-Based Sentiment Analysis for Arabic Text
por: Elfaik Hanane, et al.
Publicado: (2020)