Software defect prediction using hybrid model (CBIL) of convolutional neural network (CNN) and bidirectional long short-term memory (Bi-LSTM)

In recent years, the software industry has invested substantial effort to improve software quality in organizations. Applying proactive software defect prediction will help developers and white box testers to find the defects earlier, and this will reduce the time and effort. Traditional software de...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ahmed Bahaa Farid, Enas Mohamed Fathy, Ahmed Sharaf Eldin, Laila A. Abd-Elmegid
Formato: article
Lenguaje:EN
Publicado: PeerJ Inc. 2021
Materias:
Acceso en línea:https://doaj.org/article/2c247fe8e5db4cf1a34df6acf36a648e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares