Software defect prediction using hybrid model (CBIL) of convolutional neural network (CNN) and bidirectional long short-term memory (Bi-LSTM)
In recent years, the software industry has invested substantial effort to improve software quality in organizations. Applying proactive software defect prediction will help developers and white box testers to find the defects earlier, and this will reduce the time and effort. Traditional software de...
Enregistré dans:
Auteurs principaux: | Ahmed Bahaa Farid, Enas Mohamed Fathy, Ahmed Sharaf Eldin, Laila A. Abd-Elmegid |
---|---|
Format: | article |
Langue: | EN |
Publié: |
PeerJ Inc.
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/2c247fe8e5db4cf1a34df6acf36a648e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Automatic Unsupervised Fabric Defect Detection Based on Self-Feature Comparison
par: Zhengrui Peng, et autres
Publié: (2021) -
Deep Convolutional Neural Network Optimization for Defect Detection in Fabric Inspection
par: Chao-Ching Ho, et autres
Publié: (2021) -
Chip Appearance Defect Recognition Based on Convolutional Neural Network
par: Jun Wang, et autres
Publié: (2021) -
Multi-view learning for software defect prediction
par: Elife Ozturk Kiyak, et autres
Publié: (2021) -
Deep Bidirectional LSTM Network Learning-Based Sentiment Analysis for Arabic Text
par: Elfaik Hanane, et autres
Publié: (2020)