Software defect prediction using hybrid model (CBIL) of convolutional neural network (CNN) and bidirectional long short-term memory (Bi-LSTM)

In recent years, the software industry has invested substantial effort to improve software quality in organizations. Applying proactive software defect prediction will help developers and white box testers to find the defects earlier, and this will reduce the time and effort. Traditional software de...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Ahmed Bahaa Farid, Enas Mohamed Fathy, Ahmed Sharaf Eldin, Laila A. Abd-Elmegid
Format: article
Langue:EN
Publié: PeerJ Inc. 2021
Sujets:
Accès en ligne:https://doaj.org/article/2c247fe8e5db4cf1a34df6acf36a648e
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!