Multiple ITS copies reveal extensive hybridization within Rheum (Polygonaceae), a genus that has undergone rapid radiation.
<h4>Background</h4>During adaptive radiation events, characters can arise multiple times due to parallel evolution, but transfer of traits through hybridization provides an alternative explanation for the same character appearing in apparently non-sister lineages. The signature of hybrid...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2c276913c4d94fc092cc58b908fa2b02 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2c276913c4d94fc092cc58b908fa2b02 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2c276913c4d94fc092cc58b908fa2b022021-11-18T08:30:43ZMultiple ITS copies reveal extensive hybridization within Rheum (Polygonaceae), a genus that has undergone rapid radiation.1932-620310.1371/journal.pone.0089769https://doaj.org/article/2c276913c4d94fc092cc58b908fa2b022014-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24587023/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Background</h4>During adaptive radiation events, characters can arise multiple times due to parallel evolution, but transfer of traits through hybridization provides an alternative explanation for the same character appearing in apparently non-sister lineages. The signature of hybridization can be detected in incongruence between phylogenies derived from different markers, or from the presence of two divergent versions of a nuclear marker such as ITS within one individual.<h4>Methodology/principal findings</h4>In this study, we cloned and sequenced ITS regions for 30 species of the genus Rheum, and compared them with a cpDNA phylogeny. Seven species contained two divergent copies of ITS that resolved in different clades from one another in each case, indicating hybridization events too recent for concerted evolution to have homogenised the ITS sequences. Hybridization was also indicated in at least two further species via incongruence in their position between ITS and cpDNA phylogenies. None of the ITS sequences present in these nine species matched those detected in any other species, which provides tentative evidence against recent introgression as an explanation. Rheum globulosum, previously indicated by cpDNA to represent an independent origin of decumbent habit, is indicated by ITS to be part of clade of decumbent species, which acquired cpDNA of another clade via hybridization. However decumbent and glasshouse morphology are confirmed to have arisen three and two times, respectively.<h4>Conclusions</h4>These findings suggested that hybridization among QTP species of Rheum has been extensive, and that a role of hybridization in diversification of Rheum requires investigation.Dongshi WanYongshuai SunXu ZhangXiaotao BaiJun WangAilan WangRichard MilnePublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 9, Iss 2, p e89769 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Dongshi Wan Yongshuai Sun Xu Zhang Xiaotao Bai Jun Wang Ailan Wang Richard Milne Multiple ITS copies reveal extensive hybridization within Rheum (Polygonaceae), a genus that has undergone rapid radiation. |
description |
<h4>Background</h4>During adaptive radiation events, characters can arise multiple times due to parallel evolution, but transfer of traits through hybridization provides an alternative explanation for the same character appearing in apparently non-sister lineages. The signature of hybridization can be detected in incongruence between phylogenies derived from different markers, or from the presence of two divergent versions of a nuclear marker such as ITS within one individual.<h4>Methodology/principal findings</h4>In this study, we cloned and sequenced ITS regions for 30 species of the genus Rheum, and compared them with a cpDNA phylogeny. Seven species contained two divergent copies of ITS that resolved in different clades from one another in each case, indicating hybridization events too recent for concerted evolution to have homogenised the ITS sequences. Hybridization was also indicated in at least two further species via incongruence in their position between ITS and cpDNA phylogenies. None of the ITS sequences present in these nine species matched those detected in any other species, which provides tentative evidence against recent introgression as an explanation. Rheum globulosum, previously indicated by cpDNA to represent an independent origin of decumbent habit, is indicated by ITS to be part of clade of decumbent species, which acquired cpDNA of another clade via hybridization. However decumbent and glasshouse morphology are confirmed to have arisen three and two times, respectively.<h4>Conclusions</h4>These findings suggested that hybridization among QTP species of Rheum has been extensive, and that a role of hybridization in diversification of Rheum requires investigation. |
format |
article |
author |
Dongshi Wan Yongshuai Sun Xu Zhang Xiaotao Bai Jun Wang Ailan Wang Richard Milne |
author_facet |
Dongshi Wan Yongshuai Sun Xu Zhang Xiaotao Bai Jun Wang Ailan Wang Richard Milne |
author_sort |
Dongshi Wan |
title |
Multiple ITS copies reveal extensive hybridization within Rheum (Polygonaceae), a genus that has undergone rapid radiation. |
title_short |
Multiple ITS copies reveal extensive hybridization within Rheum (Polygonaceae), a genus that has undergone rapid radiation. |
title_full |
Multiple ITS copies reveal extensive hybridization within Rheum (Polygonaceae), a genus that has undergone rapid radiation. |
title_fullStr |
Multiple ITS copies reveal extensive hybridization within Rheum (Polygonaceae), a genus that has undergone rapid radiation. |
title_full_unstemmed |
Multiple ITS copies reveal extensive hybridization within Rheum (Polygonaceae), a genus that has undergone rapid radiation. |
title_sort |
multiple its copies reveal extensive hybridization within rheum (polygonaceae), a genus that has undergone rapid radiation. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2014 |
url |
https://doaj.org/article/2c276913c4d94fc092cc58b908fa2b02 |
work_keys_str_mv |
AT dongshiwan multipleitscopiesrevealextensivehybridizationwithinrheumpolygonaceaeagenusthathasundergonerapidradiation AT yongshuaisun multipleitscopiesrevealextensivehybridizationwithinrheumpolygonaceaeagenusthathasundergonerapidradiation AT xuzhang multipleitscopiesrevealextensivehybridizationwithinrheumpolygonaceaeagenusthathasundergonerapidradiation AT xiaotaobai multipleitscopiesrevealextensivehybridizationwithinrheumpolygonaceaeagenusthathasundergonerapidradiation AT junwang multipleitscopiesrevealextensivehybridizationwithinrheumpolygonaceaeagenusthathasundergonerapidradiation AT ailanwang multipleitscopiesrevealextensivehybridizationwithinrheumpolygonaceaeagenusthathasundergonerapidradiation AT richardmilne multipleitscopiesrevealextensivehybridizationwithinrheumpolygonaceaeagenusthathasundergonerapidradiation |
_version_ |
1718421674387308544 |