High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings

Abstract Antibiotic resistance is a global health crisis that requires urgent action to stop its spread. To counteract the spread of antibiotic resistance, we must improve our understanding of the origin and spread of resistant bacteria in both community and healthcare settings. Unfortunately, littl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Emmanuel Nji, Joseph Kazibwe, Thomas Hambridge, Carolyn Alia Joko, Amma Aboagyewa Larbi, Lois Afua Okyerewaa Damptey, Nana Adoma Nkansa-Gyamfi, Cecilia Stålsby Lundborg, La Thi Quynh Lien
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2c31e68a86a545d8affef960fa355cb2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2c31e68a86a545d8affef960fa355cb2
record_format dspace
spelling oai:doaj.org-article:2c31e68a86a545d8affef960fa355cb22021-12-02T14:11:28ZHigh prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings10.1038/s41598-021-82693-42045-2322https://doaj.org/article/2c31e68a86a545d8affef960fa355cb22021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-82693-4https://doaj.org/toc/2045-2322Abstract Antibiotic resistance is a global health crisis that requires urgent action to stop its spread. To counteract the spread of antibiotic resistance, we must improve our understanding of the origin and spread of resistant bacteria in both community and healthcare settings. Unfortunately, little attention is being given to contain the spread of antibiotic resistance in community settings (i.e., locations outside of a hospital inpatient, acute care setting, or a hospital clinic setting), despite some studies have consistently reported a high prevalence of antibiotic resistance in the community settings. This study aimed to investigate the prevalence of antibiotic resistance in commensal Escherichia coli isolates from healthy humans in community settings in LMICs. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we synthesized studies conducted from 1989 to May 2020. A total of 9363 articles were obtained from the search and prevalence data were extracted from 33 articles and pooled together. This gave a pooled prevalence of antibiotic resistance (top ten antibiotics commonly prescribed in LMICs) in commensal E. coli isolates from human sources in community settings in LMICs of: ampicillin (72% of 13,531 isolates, 95% CI: 65–79), cefotaxime (27% of 6700 isolates, 95% CI: 12–44), chloramphenicol (45% of 7012 isolates, 95% CI: 35–53), ciprofloxacin (17% of 10,618 isolates, 95% CI: 11–25), co-trimoxazole (63% of 10,561 isolates, 95% CI: 52–73), nalidixic acid (30% of 9819 isolates, 95% CI: 21–40), oxytetracycline (78% of 1451 isolates, 95% CI: 65–88), streptomycin (58% of 3831 isolates, 95% CI: 44–72), tetracycline (67% of 11,847 isolates, 95% CI: 59–74), and trimethoprim (67% of 3265 isolates, 95% CI: 59–75). Here, we provided an appraisal of the evidence of the high prevalence of antibiotic resistance by commensal E. coli in community settings in LMICs. Our findings will have important ramifications for public health policy design to contain the spread of antibiotic resistance in community settings. Indeed, commensal E. coli is the main reservoir for spreading antibiotic resistance to other pathogenic enteric bacteria via mobile genetic elements.Emmanuel NjiJoseph KazibweThomas HambridgeCarolyn Alia JokoAmma Aboagyewa LarbiLois Afua Okyerewaa DampteyNana Adoma Nkansa-GyamfiCecilia Stålsby LundborgLa Thi Quynh LienNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Emmanuel Nji
Joseph Kazibwe
Thomas Hambridge
Carolyn Alia Joko
Amma Aboagyewa Larbi
Lois Afua Okyerewaa Damptey
Nana Adoma Nkansa-Gyamfi
Cecilia Stålsby Lundborg
La Thi Quynh Lien
High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings
description Abstract Antibiotic resistance is a global health crisis that requires urgent action to stop its spread. To counteract the spread of antibiotic resistance, we must improve our understanding of the origin and spread of resistant bacteria in both community and healthcare settings. Unfortunately, little attention is being given to contain the spread of antibiotic resistance in community settings (i.e., locations outside of a hospital inpatient, acute care setting, or a hospital clinic setting), despite some studies have consistently reported a high prevalence of antibiotic resistance in the community settings. This study aimed to investigate the prevalence of antibiotic resistance in commensal Escherichia coli isolates from healthy humans in community settings in LMICs. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we synthesized studies conducted from 1989 to May 2020. A total of 9363 articles were obtained from the search and prevalence data were extracted from 33 articles and pooled together. This gave a pooled prevalence of antibiotic resistance (top ten antibiotics commonly prescribed in LMICs) in commensal E. coli isolates from human sources in community settings in LMICs of: ampicillin (72% of 13,531 isolates, 95% CI: 65–79), cefotaxime (27% of 6700 isolates, 95% CI: 12–44), chloramphenicol (45% of 7012 isolates, 95% CI: 35–53), ciprofloxacin (17% of 10,618 isolates, 95% CI: 11–25), co-trimoxazole (63% of 10,561 isolates, 95% CI: 52–73), nalidixic acid (30% of 9819 isolates, 95% CI: 21–40), oxytetracycline (78% of 1451 isolates, 95% CI: 65–88), streptomycin (58% of 3831 isolates, 95% CI: 44–72), tetracycline (67% of 11,847 isolates, 95% CI: 59–74), and trimethoprim (67% of 3265 isolates, 95% CI: 59–75). Here, we provided an appraisal of the evidence of the high prevalence of antibiotic resistance by commensal E. coli in community settings in LMICs. Our findings will have important ramifications for public health policy design to contain the spread of antibiotic resistance in community settings. Indeed, commensal E. coli is the main reservoir for spreading antibiotic resistance to other pathogenic enteric bacteria via mobile genetic elements.
format article
author Emmanuel Nji
Joseph Kazibwe
Thomas Hambridge
Carolyn Alia Joko
Amma Aboagyewa Larbi
Lois Afua Okyerewaa Damptey
Nana Adoma Nkansa-Gyamfi
Cecilia Stålsby Lundborg
La Thi Quynh Lien
author_facet Emmanuel Nji
Joseph Kazibwe
Thomas Hambridge
Carolyn Alia Joko
Amma Aboagyewa Larbi
Lois Afua Okyerewaa Damptey
Nana Adoma Nkansa-Gyamfi
Cecilia Stålsby Lundborg
La Thi Quynh Lien
author_sort Emmanuel Nji
title High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings
title_short High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings
title_full High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings
title_fullStr High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings
title_full_unstemmed High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings
title_sort high prevalence of antibiotic resistance in commensal escherichia coli from healthy human sources in community settings
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/2c31e68a86a545d8affef960fa355cb2
work_keys_str_mv AT emmanuelnji highprevalenceofantibioticresistanceincommensalescherichiacolifromhealthyhumansourcesincommunitysettings
AT josephkazibwe highprevalenceofantibioticresistanceincommensalescherichiacolifromhealthyhumansourcesincommunitysettings
AT thomashambridge highprevalenceofantibioticresistanceincommensalescherichiacolifromhealthyhumansourcesincommunitysettings
AT carolynaliajoko highprevalenceofantibioticresistanceincommensalescherichiacolifromhealthyhumansourcesincommunitysettings
AT ammaaboagyewalarbi highprevalenceofantibioticresistanceincommensalescherichiacolifromhealthyhumansourcesincommunitysettings
AT loisafuaokyerewaadamptey highprevalenceofantibioticresistanceincommensalescherichiacolifromhealthyhumansourcesincommunitysettings
AT nanaadomankansagyamfi highprevalenceofantibioticresistanceincommensalescherichiacolifromhealthyhumansourcesincommunitysettings
AT ceciliastalsbylundborg highprevalenceofantibioticresistanceincommensalescherichiacolifromhealthyhumansourcesincommunitysettings
AT lathiquynhlien highprevalenceofantibioticresistanceincommensalescherichiacolifromhealthyhumansourcesincommunitysettings
_version_ 1718391834086998016