Timing and nature of AMOC recovery across Termination 2 and magnitude of deglacial CO2 change
Differences in the sequence and timing of ocean circulation changes across glacial terminations could affect the magnitude of deglacial atmospheric CO2 rise. Here, the authors argue that late ocean circulation recovery during the penultimate deglaciation (T2) led to a larger rise in CO2compared with...
Saved in:
Main Authors: | Emily L. Deaney, Stephen Barker, Tina van de Flierdt |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2017
|
Subjects: | |
Online Access: | https://doaj.org/article/2c33df67abf64c7d98d0bf35ef2ccf24 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
The nature of deep overturning and reconfigurations of the silicon cycle across the last deglaciation
by: M. Dumont, et al.
Published: (2020) -
Decadal-scale onset and termination of Antarctic ice-mass loss during the last deglaciation
by: Michael E. Weber, et al.
Published: (2021) -
Southern Ocean contribution to both steps in deglacial atmospheric CO2 rise
by: Thomas A. Ronge, et al.
Published: (2021) -
Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO2 rise
by: L. Menviel, et al.
Published: (2018) -
Author Correction: Penultimate deglacial warming across the Mediterranean Sea revealed by clumped isotopes in foraminifera
by: L. Rodríguez-Sanz, et al.
Published: (2021)