Rapid inactivation of SARS-CoV-2 with LED irradiation of visible spectrum wavelengths

Difficulty in controlling SARS-CoV-2 transmission made the ability to inactivate viruses in aerosols and fomites to be an important and attractive risk reduction measure. Evidence that light frequencies have the ability to inhibit microorganisms has already been reported by many studies which, howev...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Riccardo De Santis, Vincenzo Luca, Jonas Näslund, Rosina K. Ehmann, Marta De Angelis, Eva Lundmark, Lucia Nencioni, Giovanni Faggioni, Silvia Fillo, Donatella Amatore, Elisa Regalbuto, Filippo Molinari, Giancarlo Petralito, Roman Wölfel, Paola Stefanelli, Gianni Rezza, Anna Teresa Palamara, Markus Antwerpen, Mats Forsman, Florigio Lista
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/2c4253f0ce4f44eb9584776e1928c151
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Difficulty in controlling SARS-CoV-2 transmission made the ability to inactivate viruses in aerosols and fomites to be an important and attractive risk reduction measure. Evidence that light frequencies have the ability to inhibit microorganisms has already been reported by many studies which, however, focused on ultraviolet (UV) wavelengths, which are known to induce potential injury in humans. In the present study, the effect on suspensions of SARS-CoV-2 of a Light Emitting Diode (LED) device capable of radiating frequencies in the non-hazardous visible light spectrum (VIS) was investigated. In order to evaluate the efficiency of viral inactivation, plaque assay and western blot of viral proteins were performed. The observed results showed a significant reduction in infectious particles that had been exposed to the LED irradiation of visible light. Furthermore, the analysis of the intracellular expression of viral proteins confirmed the inactivating effect of this irradiation technology. This in vitro study revealed for the first time the inactivation of SARS-CoV-2 through LED irradiation with multiple wavelengths of the visible spectrum. However additional and more in-depth studies can aim to demonstrate the data obtained during these experiments in different matrices, in mutable environmental conditions and on other respiratory viruses such as the influenza virus. The type of LED technology can decisively contribute on reducing virus transmission through the continuous sanitation of common environments without risks for humans and animals.