Integrin αvβ3-targeted gold nanoshells augment tumor vasculature-specific imaging and therapy
Huan Xie1, Parmeswaran Diagaradjane2, Amit A Deorukhkar2, Beth Goins3, Ande Bao3, William T Phillips3, Zheng Wang4, Jon Schwartz5, Sunil Krishnan21Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA; 2Department of Radiation Onc...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2c66ec9058a24823929bc354acf529d7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2c66ec9058a24823929bc354acf529d7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2c66ec9058a24823929bc354acf529d72021-12-02T07:28:32ZIntegrin αvβ3-targeted gold nanoshells augment tumor vasculature-specific imaging and therapy1176-91141178-2013https://doaj.org/article/2c66ec9058a24823929bc354acf529d72011-01-01T00:00:00Zhttp://www.dovepress.com/integrin-alphavbeta3-targeted-gold-nanoshells-augment-tumor-vasculatur-a6158https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Huan Xie1, Parmeswaran Diagaradjane2, Amit A Deorukhkar2, Beth Goins3, Ande Bao3, William T Phillips3, Zheng Wang4, Jon Schwartz5, Sunil Krishnan21Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA; 2Department of Radiation Oncology, Division of Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA; 3Department of Radiology, the University of Texas Health Science Center at San Antonio (UTHSC-San Antonio), San Antonio, TX, USA; 4MPI Research, Inc., Mattawan, MI, USA; 5Nanospectra Biosciences, Inc., Houston, TX, USAPurpose: Gold nanoshells (NSs) have already shown great promise as photothermal actuators for cancer therapy. Integrin αvβ3 is a marker that is specifically and preferentially overexpressed on multiple tumor types and on angiogenic tumor neovasculature. Active targeting of NSs to integrin αvβ3 offers the potential to increase accumulation preferentially in tumors and thereby enhance therapy efficacy.Methods: Enzyme-linked immunosorbent assay (ELISA) and cell binding assay were used to study the in vitro binding affinities of the targeted nanoconjugate NS–RGDfK. In vivo biodistribution and tumor specificity were analyzed using 64Cu-radiolabeled untargeted and targeted NSs in live nude rats bearing head and neck squamous cell carcinoma (HNSCC) xenografts. The potential thermal therapy applications of NS–RGDfK were evaluated by subablative thermal therapy of tumor xenografts using untargeted and targeted NSs.Results: ELISA and cell binding assay confirmed the binding affinity of NS–RGDfK to integrin αvβ3. Positron emission tomography/computed tomography imaging suggested that tumor targeting is improved by conjugation of NSs to cyclo(RGDfK) and peaks at ~20 hours postinjection. In the subablative thermal therapy study, greater biological effectiveness of targeted NSs was implied by the greater degree of tumor necrosis.Conclusion: The results presented in this paper set the stage for the advancement of integrin αvβ3-targeted NSs as therapeutic nanoconstructs for effective cancer therapy.Keywords: nanoparticle, cyclo(RGDfK), cancer, thermal ablation Huan XieParmeswaran DiagaradjaneAmit A Deorukhkaret alDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2011, Iss default, Pp 259-269 (2011) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine (General) R5-920 |
spellingShingle |
Medicine (General) R5-920 Huan Xie Parmeswaran Diagaradjane Amit A Deorukhkar et al Integrin αvβ3-targeted gold nanoshells augment tumor vasculature-specific imaging and therapy |
description |
Huan Xie1, Parmeswaran Diagaradjane2, Amit A Deorukhkar2, Beth Goins3, Ande Bao3, William T Phillips3, Zheng Wang4, Jon Schwartz5, Sunil Krishnan21Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA; 2Department of Radiation Oncology, Division of Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA; 3Department of Radiology, the University of Texas Health Science Center at San Antonio (UTHSC-San Antonio), San Antonio, TX, USA; 4MPI Research, Inc., Mattawan, MI, USA; 5Nanospectra Biosciences, Inc., Houston, TX, USAPurpose: Gold nanoshells (NSs) have already shown great promise as photothermal actuators for cancer therapy. Integrin αvβ3 is a marker that is specifically and preferentially overexpressed on multiple tumor types and on angiogenic tumor neovasculature. Active targeting of NSs to integrin αvβ3 offers the potential to increase accumulation preferentially in tumors and thereby enhance therapy efficacy.Methods: Enzyme-linked immunosorbent assay (ELISA) and cell binding assay were used to study the in vitro binding affinities of the targeted nanoconjugate NS–RGDfK. In vivo biodistribution and tumor specificity were analyzed using 64Cu-radiolabeled untargeted and targeted NSs in live nude rats bearing head and neck squamous cell carcinoma (HNSCC) xenografts. The potential thermal therapy applications of NS–RGDfK were evaluated by subablative thermal therapy of tumor xenografts using untargeted and targeted NSs.Results: ELISA and cell binding assay confirmed the binding affinity of NS–RGDfK to integrin αvβ3. Positron emission tomography/computed tomography imaging suggested that tumor targeting is improved by conjugation of NSs to cyclo(RGDfK) and peaks at ~20 hours postinjection. In the subablative thermal therapy study, greater biological effectiveness of targeted NSs was implied by the greater degree of tumor necrosis.Conclusion: The results presented in this paper set the stage for the advancement of integrin αvβ3-targeted NSs as therapeutic nanoconstructs for effective cancer therapy.Keywords: nanoparticle, cyclo(RGDfK), cancer, thermal ablation |
format |
article |
author |
Huan Xie Parmeswaran Diagaradjane Amit A Deorukhkar et al |
author_facet |
Huan Xie Parmeswaran Diagaradjane Amit A Deorukhkar et al |
author_sort |
Huan Xie |
title |
Integrin αvβ3-targeted gold nanoshells augment tumor vasculature-specific imaging and therapy |
title_short |
Integrin αvβ3-targeted gold nanoshells augment tumor vasculature-specific imaging and therapy |
title_full |
Integrin αvβ3-targeted gold nanoshells augment tumor vasculature-specific imaging and therapy |
title_fullStr |
Integrin αvβ3-targeted gold nanoshells augment tumor vasculature-specific imaging and therapy |
title_full_unstemmed |
Integrin αvβ3-targeted gold nanoshells augment tumor vasculature-specific imaging and therapy |
title_sort |
integrin αvβ3-targeted gold nanoshells augment tumor vasculature-specific imaging and therapy |
publisher |
Dove Medical Press |
publishDate |
2011 |
url |
https://doaj.org/article/2c66ec9058a24823929bc354acf529d7 |
work_keys_str_mv |
AT huanxie integrinampalphavampbeta3targetedgoldnanoshellsaugmenttumorvasculaturespecificimagingandtherapy AT parmeswarandiagaradjane integrinampalphavampbeta3targetedgoldnanoshellsaugmenttumorvasculaturespecificimagingandtherapy AT amitadeorukhkar integrinampalphavampbeta3targetedgoldnanoshellsaugmenttumorvasculaturespecificimagingandtherapy AT etal integrinampalphavampbeta3targetedgoldnanoshellsaugmenttumorvasculaturespecificimagingandtherapy |
_version_ |
1718399390649942016 |