Quantum-Inspired Magnetic Hamiltonian Monte Carlo.
Hamiltonian Monte Carlo (HMC) is a Markov Chain Monte Carlo algorithm that is able to generate distant proposals via the use of Hamiltonian dynamics, which are able to incorporate first-order gradient information about the target posterior. This has driven its rise in popularity in the machine learn...
Guardado en:
Autores principales: | Wilson Tsakane Mongwe, Rendani Mbuvha, Tshilidzi Marwala |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2c718fa2e4cf4554bd9859532351e9ed |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Adaptive Magnetic Hamiltonian Monte Carlo
por: Wilson Tsakane Mongwe, et al.
Publicado: (2021) -
Utilising Partial Momentum Refreshment in Separable Shadow Hamiltonian Hybrid Monte Carlo
por: Wilson Tsakane Mongwe, et al.
Publicado: (2021) -
Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets
por: Andrew D. King, et al.
Publicado: (2021) -
Frequency-resolved Monte Carlo
por: Juan Camilo López Carreño, et al.
Publicado: (2018) -
Reduction of the molecular hamiltonian matrix using quantum community detection
por: Susan M. Mniszewski, et al.
Publicado: (2021)