New crystal structure prediction of fully hydrogenated borophene by first principles calculations

Abstract New crystal structures of fully hydrogenated borophene (borophane) have been predicted by first principles calculation. Comparing with the chair-like borophane (C-boropane) that has been reported in literature, we obtained four new borophane conformers with much lower total-energy. The most...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhiqiang Wang, Tie-Yu Lü, Hui-Qiong Wang, Yuan Ping Feng, Jin-Cheng Zheng
Format: article
Language:EN
Published: Nature Portfolio 2017
Subjects:
R
Q
Online Access:https://doaj.org/article/2c87e6983cdc49c7b45883465ef320cf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract New crystal structures of fully hydrogenated borophene (borophane) have been predicted by first principles calculation. Comparing with the chair-like borophane (C-boropane) that has been reported in literature, we obtained four new borophane conformers with much lower total-energy. The most stable one, washboard-like borophane (W-borophane), has energy about 113.41 meV/atom lower than C-borophane. In order to explain the relative stability of different borophane conformers, the atom configuration, density of states, charge transfer, charge density distribution and defect formation energy of B-H dimer have been calculated. The results show that the charge transfer from B atoms to H atoms is crucial for the stability of borophane. In different borophane conformers, the bonding characteristics between B and H atoms are similar, but the B-B bonds in W-borophane are much stronger than that in C-borophane or other structures. In addition, we examined the dynamical stability of borophane conformers by phonon dispersions and found that the four new conformers are all dynamically stable. Finally the mechanical properties of borophane conformers along an arbitrary direction have been discussed. W-borophane possesses unique electronic structure (Dirac cone), good stability and superior mechanical properties. W-borophane has broad perspective for nano electronic device.