Revealing quantum effects in highly conductive δ-layer systems
A solution to performance related challenges posed by nanoscale field effect transistors is to consider atomically thin impurity layers in Si-based devices however there are many aspects of the conductive properties that are still unknown. Here, the authors develop an open system quantum transport m...
Enregistré dans:
Auteurs principaux: | , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/2c989a70bbd845da9c31ef22987d25c7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | A solution to performance related challenges posed by nanoscale field effect transistors is to consider atomically thin impurity layers in Si-based devices however there are many aspects of the conductive properties that are still unknown. Here, the authors develop an open system quantum transport method to investigate the local density electronic states of P-doped Si revealing the role of scattering, thickness and doping density. |
---|