An Intelligent Rockburst Prediction Model Based on Scorecard Methodology
Rockburst is a serious hazard in underground engineering, and accurate prediction of rockburst risk is challenging. To construct an intelligent prediction model of rockburst risk with interpretability and high accuracy, three binary scorecards predicting different risk levels of rockburst were const...
Guardado en:
Autores principales: | Honglei Wang, Zhenlei Li, Dazhao Song, Xueqiu He, Aleksei Sobolev, Majid Khan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2c9aa19e99604b91a8cadceefc489b1a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Ellinaite, CaCr<sub>2</sub>O<sub>4</sub>, a new natural post-spinel oxide from Hatrurim Basin, Israel, and Juína kimberlite field, Brazil
por: V. V. Sharygin, et al.
Publicado: (2021) -
New data on gersdorffite and associated minerals from the Peloritani Mountains (Sicily, Italy)
por: D. Mauro, et al.
Publicado: (2021) -
Geochronology of granites of the western Korosten AMCG complex (Ukrainian Shield): implications for the emplacement history and origin of miarolitic pegmatites
por: L. Shumlyanskyy, et al.
Publicado: (2021) -
Characterization and origin of the Mn-rich patinas formed on Lunéville château sandstones
por: L. Gatuingt, et al.
Publicado: (2021) -
New insights in the mechanisms of the reaction 3.65 Å phase = clinoenstatite + water down to nanoscales
por: M. Koch-Müller, et al.
Publicado: (2021)