Bird Species Identification Using Spectrogram Based on Multi-Channel Fusion of DCNNs
Deep convolutional neural networks (DCNNs) have achieved breakthrough performance on bird species identification using a spectrogram of bird vocalization. Aiming at the imbalance of the bird vocalization dataset, a single feature identification model (SFIM) with residual blocks and modified, weighte...
Guardado en:
Autores principales: | Feiyu Zhang, Luyang Zhang, Hongxiang Chen, Jiangjian Xie |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2ca38a7e0955475892901a44421f3ddc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Past, present and future of fusion science diplomacy
por: Matteo Barbarino
Publicado: (2021) -
Quantum capacity analysis of multi-level amplitude damping channels
por: Stefano Chessa, et al.
Publicado: (2021) -
On the Achievable Rate Region of the <i>K</i>-Receiver Broadcast Channels via Exhaustive Message Splitting
por: Rui Tang, et al.
Publicado: (2021) -
Kinetic magnetoelectric effect in topological insulators
por: Ken Osumi, et al.
Publicado: (2021) -
Observation of interaction-induced phenomena of relativistic quantum mechanics
por: Weixuan Zhang, et al.
Publicado: (2021)