Machine Learning and Deterministic Approach to the Reflective Ultrasound Tomography
This paper describes the method developed using the Extreme Gradient Boosting (Xgboost) algorithm that allows high-resolution imaging using the ultrasound tomography (UST) signal. More precisely, we can locate, isolate, and use the reflective peaks from the UST signal to achieve high-resolution imag...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2ca4a343b3ec43aaa026550f54f3481a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2ca4a343b3ec43aaa026550f54f3481a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2ca4a343b3ec43aaa026550f54f3481a2021-11-25T17:26:32ZMachine Learning and Deterministic Approach to the Reflective Ultrasound Tomography10.3390/en142275491996-1073https://doaj.org/article/2ca4a343b3ec43aaa026550f54f3481a2021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1073/14/22/7549https://doaj.org/toc/1996-1073This paper describes the method developed using the Extreme Gradient Boosting (Xgboost) algorithm that allows high-resolution imaging using the ultrasound tomography (UST) signal. More precisely, we can locate, isolate, and use the reflective peaks from the UST signal to achieve high-resolution images with low noise, which are far more useful for the location of points where the reflection occurred inside the experimental tank. Each reconstruction is divided into two parts, estimation of starting points of wave packets of raw signal (SAT—starting arrival time) and image reconstruction via XGBoost algorithm based on SAT matrix. This technology is the basis of a project to design non-invasive monitoring and diagnostics of technological processes. In this paper, we present a method of the complete solution for monitoring industrial processes. The measurements used in the study were obtained with the author’s solution of ultrasound tomography.Dariusz MajerekTomasz RymarczykDariusz WójcikEdward KozłowskiMagda RzemieniakJanusz GudowskiKonrad GaudaMDPI AGarticleultrasound imaginingmachine learningextreme gradient boostingTechnologyTENEnergies, Vol 14, Iss 7549, p 7549 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
ultrasound imagining machine learning extreme gradient boosting Technology T |
spellingShingle |
ultrasound imagining machine learning extreme gradient boosting Technology T Dariusz Majerek Tomasz Rymarczyk Dariusz Wójcik Edward Kozłowski Magda Rzemieniak Janusz Gudowski Konrad Gauda Machine Learning and Deterministic Approach to the Reflective Ultrasound Tomography |
description |
This paper describes the method developed using the Extreme Gradient Boosting (Xgboost) algorithm that allows high-resolution imaging using the ultrasound tomography (UST) signal. More precisely, we can locate, isolate, and use the reflective peaks from the UST signal to achieve high-resolution images with low noise, which are far more useful for the location of points where the reflection occurred inside the experimental tank. Each reconstruction is divided into two parts, estimation of starting points of wave packets of raw signal (SAT—starting arrival time) and image reconstruction via XGBoost algorithm based on SAT matrix. This technology is the basis of a project to design non-invasive monitoring and diagnostics of technological processes. In this paper, we present a method of the complete solution for monitoring industrial processes. The measurements used in the study were obtained with the author’s solution of ultrasound tomography. |
format |
article |
author |
Dariusz Majerek Tomasz Rymarczyk Dariusz Wójcik Edward Kozłowski Magda Rzemieniak Janusz Gudowski Konrad Gauda |
author_facet |
Dariusz Majerek Tomasz Rymarczyk Dariusz Wójcik Edward Kozłowski Magda Rzemieniak Janusz Gudowski Konrad Gauda |
author_sort |
Dariusz Majerek |
title |
Machine Learning and Deterministic Approach to the Reflective Ultrasound Tomography |
title_short |
Machine Learning and Deterministic Approach to the Reflective Ultrasound Tomography |
title_full |
Machine Learning and Deterministic Approach to the Reflective Ultrasound Tomography |
title_fullStr |
Machine Learning and Deterministic Approach to the Reflective Ultrasound Tomography |
title_full_unstemmed |
Machine Learning and Deterministic Approach to the Reflective Ultrasound Tomography |
title_sort |
machine learning and deterministic approach to the reflective ultrasound tomography |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/2ca4a343b3ec43aaa026550f54f3481a |
work_keys_str_mv |
AT dariuszmajerek machinelearninganddeterministicapproachtothereflectiveultrasoundtomography AT tomaszrymarczyk machinelearninganddeterministicapproachtothereflectiveultrasoundtomography AT dariuszwojcik machinelearninganddeterministicapproachtothereflectiveultrasoundtomography AT edwardkozłowski machinelearninganddeterministicapproachtothereflectiveultrasoundtomography AT magdarzemieniak machinelearninganddeterministicapproachtothereflectiveultrasoundtomography AT januszgudowski machinelearninganddeterministicapproachtothereflectiveultrasoundtomography AT konradgauda machinelearninganddeterministicapproachtothereflectiveultrasoundtomography |
_version_ |
1718412340045545472 |