Machine Learning and Deterministic Approach to the Reflective Ultrasound Tomography

This paper describes the method developed using the Extreme Gradient Boosting (Xgboost) algorithm that allows high-resolution imaging using the ultrasound tomography (UST) signal. More precisely, we can locate, isolate, and use the reflective peaks from the UST signal to achieve high-resolution imag...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dariusz Majerek, Tomasz Rymarczyk, Dariusz Wójcik, Edward Kozłowski, Magda Rzemieniak, Janusz Gudowski, Konrad Gauda
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/2ca4a343b3ec43aaa026550f54f3481a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2ca4a343b3ec43aaa026550f54f3481a
record_format dspace
spelling oai:doaj.org-article:2ca4a343b3ec43aaa026550f54f3481a2021-11-25T17:26:32ZMachine Learning and Deterministic Approach to the Reflective Ultrasound Tomography10.3390/en142275491996-1073https://doaj.org/article/2ca4a343b3ec43aaa026550f54f3481a2021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1073/14/22/7549https://doaj.org/toc/1996-1073This paper describes the method developed using the Extreme Gradient Boosting (Xgboost) algorithm that allows high-resolution imaging using the ultrasound tomography (UST) signal. More precisely, we can locate, isolate, and use the reflective peaks from the UST signal to achieve high-resolution images with low noise, which are far more useful for the location of points where the reflection occurred inside the experimental tank. Each reconstruction is divided into two parts, estimation of starting points of wave packets of raw signal (SAT—starting arrival time) and image reconstruction via XGBoost algorithm based on SAT matrix. This technology is the basis of a project to design non-invasive monitoring and diagnostics of technological processes. In this paper, we present a method of the complete solution for monitoring industrial processes. The measurements used in the study were obtained with the author’s solution of ultrasound tomography.Dariusz MajerekTomasz RymarczykDariusz WójcikEdward KozłowskiMagda RzemieniakJanusz GudowskiKonrad GaudaMDPI AGarticleultrasound imaginingmachine learningextreme gradient boostingTechnologyTENEnergies, Vol 14, Iss 7549, p 7549 (2021)
institution DOAJ
collection DOAJ
language EN
topic ultrasound imagining
machine learning
extreme gradient boosting
Technology
T
spellingShingle ultrasound imagining
machine learning
extreme gradient boosting
Technology
T
Dariusz Majerek
Tomasz Rymarczyk
Dariusz Wójcik
Edward Kozłowski
Magda Rzemieniak
Janusz Gudowski
Konrad Gauda
Machine Learning and Deterministic Approach to the Reflective Ultrasound Tomography
description This paper describes the method developed using the Extreme Gradient Boosting (Xgboost) algorithm that allows high-resolution imaging using the ultrasound tomography (UST) signal. More precisely, we can locate, isolate, and use the reflective peaks from the UST signal to achieve high-resolution images with low noise, which are far more useful for the location of points where the reflection occurred inside the experimental tank. Each reconstruction is divided into two parts, estimation of starting points of wave packets of raw signal (SAT—starting arrival time) and image reconstruction via XGBoost algorithm based on SAT matrix. This technology is the basis of a project to design non-invasive monitoring and diagnostics of technological processes. In this paper, we present a method of the complete solution for monitoring industrial processes. The measurements used in the study were obtained with the author’s solution of ultrasound tomography.
format article
author Dariusz Majerek
Tomasz Rymarczyk
Dariusz Wójcik
Edward Kozłowski
Magda Rzemieniak
Janusz Gudowski
Konrad Gauda
author_facet Dariusz Majerek
Tomasz Rymarczyk
Dariusz Wójcik
Edward Kozłowski
Magda Rzemieniak
Janusz Gudowski
Konrad Gauda
author_sort Dariusz Majerek
title Machine Learning and Deterministic Approach to the Reflective Ultrasound Tomography
title_short Machine Learning and Deterministic Approach to the Reflective Ultrasound Tomography
title_full Machine Learning and Deterministic Approach to the Reflective Ultrasound Tomography
title_fullStr Machine Learning and Deterministic Approach to the Reflective Ultrasound Tomography
title_full_unstemmed Machine Learning and Deterministic Approach to the Reflective Ultrasound Tomography
title_sort machine learning and deterministic approach to the reflective ultrasound tomography
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/2ca4a343b3ec43aaa026550f54f3481a
work_keys_str_mv AT dariuszmajerek machinelearninganddeterministicapproachtothereflectiveultrasoundtomography
AT tomaszrymarczyk machinelearninganddeterministicapproachtothereflectiveultrasoundtomography
AT dariuszwojcik machinelearninganddeterministicapproachtothereflectiveultrasoundtomography
AT edwardkozłowski machinelearninganddeterministicapproachtothereflectiveultrasoundtomography
AT magdarzemieniak machinelearninganddeterministicapproachtothereflectiveultrasoundtomography
AT januszgudowski machinelearninganddeterministicapproachtothereflectiveultrasoundtomography
AT konradgauda machinelearninganddeterministicapproachtothereflectiveultrasoundtomography
_version_ 1718412340045545472