Machine Learning and Deterministic Approach to the Reflective Ultrasound Tomography
This paper describes the method developed using the Extreme Gradient Boosting (Xgboost) algorithm that allows high-resolution imaging using the ultrasound tomography (UST) signal. More precisely, we can locate, isolate, and use the reflective peaks from the UST signal to achieve high-resolution imag...
Guardado en:
Autores principales: | Dariusz Majerek, Tomasz Rymarczyk, Dariusz Wójcik, Edward Kozłowski, Magda Rzemieniak, Janusz Gudowski, Konrad Gauda |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2ca4a343b3ec43aaa026550f54f3481a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Mothers Matter: Using Regression Tree Algorithms to Predict Adolescents’ Sharing of Drunk References on Social Media
por: Sebastian Kurten, et al.
Publicado: (2021) -
Modeling the Spatial Distribution of Soil Nitrogen Content at Smallholder Maize Farms Using Machine Learning Regression and Sentinel-2 Data
por: Zinhle Mashaba-Munghemezulu, et al.
Publicado: (2021) -
Predicting COVID-19 mortality risk in Toronto, Canada: a comparison of tree-based and regression-based machine learning methods
por: Cindy Feng, et al.
Publicado: (2021) -
Experimental Analysis of GBM to Expand the Time Horizon of Irish Electricity Price Forecasts
por: Conor Lynch, et al.
Publicado: (2021) -
Mapping Population Distribution Based on XGBoost Using Multisource Data
por: Xin Zhao, et al.
Publicado: (2021)