Deep learning-Based 3D inpainting of brain MR images

Abstract The detailed anatomical information of the brain provided by 3D magnetic resonance imaging (MRI) enables various neuroscience research. However, due to the long scan time for 3D MR images, 2D images are mainly obtained in clinical environments. The purpose of this study is to generate 3D im...

Full description

Saved in:
Bibliographic Details
Main Authors: Seung Kwan Kang, Seong A. Shin, Seongho Seo, Min Soo Byun, Dong Young Lee, Yu Kyeong Kim, Dong Soo Lee, Jae Sung Lee
Format: article
Language:EN
Published: Nature Portfolio 2021
Subjects:
R
Q
Online Access:https://doaj.org/article/2cac775e7c1542be83993fd6fdf9ab8c
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The detailed anatomical information of the brain provided by 3D magnetic resonance imaging (MRI) enables various neuroscience research. However, due to the long scan time for 3D MR images, 2D images are mainly obtained in clinical environments. The purpose of this study is to generate 3D images from a sparsely sampled 2D images using an inpainting deep neural network that has a U-net-like structure and DenseNet sub-blocks. To train the network, not only fidelity loss but also perceptual loss based on the VGG network were considered. Various methods were used to assess the overall similarity between the inpainted and original 3D data. In addition, morphological analyzes were performed to investigate whether the inpainted data produced local features similar to the original 3D data. The diagnostic ability using the inpainted data was also evaluated by investigating the pattern of morphological changes in disease groups. Brain anatomy details were efficiently recovered by the proposed neural network. In voxel-based analysis to assess gray matter volume and cortical thickness, differences between the inpainted data and the original 3D data were observed only in small clusters. The proposed method will be useful for utilizing advanced neuroimaging techniques with 2D MRI data.