Hydrothermally synthesized nanostructured LiMnxFe1−xPO4 (x = 0–0.3) cathode materials with enhanced properties for lithium-ion batteries

Abstract Nanostructured cathode materials based on Mn-doped olivine LiMnxFe1−xPO4 (x = 0, 0.1, 0.2, and 0.3) were successfully synthesized via a hydrothermal route. The field-emission scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyzed results indicated that th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dung V. Trinh, Mai T. T. Nguyen, Hue T. M. Dang, Dung T. Dang, Hang T. T. Le, Huynh T. N. Le, Hoang V. Tran, Chinh D. Huynh
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2cb437e40b2e425a8368f163c31cd23b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2cb437e40b2e425a8368f163c31cd23b
record_format dspace
spelling oai:doaj.org-article:2cb437e40b2e425a8368f163c31cd23b2021-12-02T17:47:15ZHydrothermally synthesized nanostructured LiMnxFe1−xPO4 (x = 0–0.3) cathode materials with enhanced properties for lithium-ion batteries10.1038/s41598-021-91881-12045-2322https://doaj.org/article/2cb437e40b2e425a8368f163c31cd23b2021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-91881-1https://doaj.org/toc/2045-2322Abstract Nanostructured cathode materials based on Mn-doped olivine LiMnxFe1−xPO4 (x = 0, 0.1, 0.2, and 0.3) were successfully synthesized via a hydrothermal route. The field-emission scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyzed results indicated that the synthesized LiMnxFe1−xPO4 (x = 0, 0.1, 0.2, and 0.3) samples possessed a sphere-like nanostructure and a relatively homogeneous size distribution in the range of 100–200 nm. Electrochemical experiments and analysis showed that the Mn doping increased the redox potential and boosted the capacity. While the undoped olivine (LiFePO4) had a capacity of 169 mAh g−1 with a slight reduction (10%) in the initial capacity after 50 cycles (150 mAh g−1), the Mn-doped olivine samples (LiMnxFe1−xPO4) demonstrated reliable cycling tests with negligible capacity loss, reaching 151, 147, and 157 mAh g−1 for x = 0.1, 0.2, and 0.3, respectively. The results from electrochemical impedance spectroscopy (EIS) accompanied by the galvanostatic intermittent titration technique (GITT) have resulted that the Mn substitution for Fe promoted the charge transfer process and hence the rapid Li transport. These findings indicate that the LiMnxFe1−xPO4 nanostructures are promising cathode materials for lithium ion battery applications.Dung V. TrinhMai T. T. NguyenHue T. M. DangDung T. DangHang T. T. LeHuynh T. N. LeHoang V. TranChinh D. HuynhNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Dung V. Trinh
Mai T. T. Nguyen
Hue T. M. Dang
Dung T. Dang
Hang T. T. Le
Huynh T. N. Le
Hoang V. Tran
Chinh D. Huynh
Hydrothermally synthesized nanostructured LiMnxFe1−xPO4 (x = 0–0.3) cathode materials with enhanced properties for lithium-ion batteries
description Abstract Nanostructured cathode materials based on Mn-doped olivine LiMnxFe1−xPO4 (x = 0, 0.1, 0.2, and 0.3) were successfully synthesized via a hydrothermal route. The field-emission scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyzed results indicated that the synthesized LiMnxFe1−xPO4 (x = 0, 0.1, 0.2, and 0.3) samples possessed a sphere-like nanostructure and a relatively homogeneous size distribution in the range of 100–200 nm. Electrochemical experiments and analysis showed that the Mn doping increased the redox potential and boosted the capacity. While the undoped olivine (LiFePO4) had a capacity of 169 mAh g−1 with a slight reduction (10%) in the initial capacity after 50 cycles (150 mAh g−1), the Mn-doped olivine samples (LiMnxFe1−xPO4) demonstrated reliable cycling tests with negligible capacity loss, reaching 151, 147, and 157 mAh g−1 for x = 0.1, 0.2, and 0.3, respectively. The results from electrochemical impedance spectroscopy (EIS) accompanied by the galvanostatic intermittent titration technique (GITT) have resulted that the Mn substitution for Fe promoted the charge transfer process and hence the rapid Li transport. These findings indicate that the LiMnxFe1−xPO4 nanostructures are promising cathode materials for lithium ion battery applications.
format article
author Dung V. Trinh
Mai T. T. Nguyen
Hue T. M. Dang
Dung T. Dang
Hang T. T. Le
Huynh T. N. Le
Hoang V. Tran
Chinh D. Huynh
author_facet Dung V. Trinh
Mai T. T. Nguyen
Hue T. M. Dang
Dung T. Dang
Hang T. T. Le
Huynh T. N. Le
Hoang V. Tran
Chinh D. Huynh
author_sort Dung V. Trinh
title Hydrothermally synthesized nanostructured LiMnxFe1−xPO4 (x = 0–0.3) cathode materials with enhanced properties for lithium-ion batteries
title_short Hydrothermally synthesized nanostructured LiMnxFe1−xPO4 (x = 0–0.3) cathode materials with enhanced properties for lithium-ion batteries
title_full Hydrothermally synthesized nanostructured LiMnxFe1−xPO4 (x = 0–0.3) cathode materials with enhanced properties for lithium-ion batteries
title_fullStr Hydrothermally synthesized nanostructured LiMnxFe1−xPO4 (x = 0–0.3) cathode materials with enhanced properties for lithium-ion batteries
title_full_unstemmed Hydrothermally synthesized nanostructured LiMnxFe1−xPO4 (x = 0–0.3) cathode materials with enhanced properties for lithium-ion batteries
title_sort hydrothermally synthesized nanostructured limnxfe1−xpo4 (x = 0–0.3) cathode materials with enhanced properties for lithium-ion batteries
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/2cb437e40b2e425a8368f163c31cd23b
work_keys_str_mv AT dungvtrinh hydrothermallysynthesizednanostructuredlimnxfe1xpo4x003cathodematerialswithenhancedpropertiesforlithiumionbatteries
AT maittnguyen hydrothermallysynthesizednanostructuredlimnxfe1xpo4x003cathodematerialswithenhancedpropertiesforlithiumionbatteries
AT huetmdang hydrothermallysynthesizednanostructuredlimnxfe1xpo4x003cathodematerialswithenhancedpropertiesforlithiumionbatteries
AT dungtdang hydrothermallysynthesizednanostructuredlimnxfe1xpo4x003cathodematerialswithenhancedpropertiesforlithiumionbatteries
AT hangttle hydrothermallysynthesizednanostructuredlimnxfe1xpo4x003cathodematerialswithenhancedpropertiesforlithiumionbatteries
AT huynhtnle hydrothermallysynthesizednanostructuredlimnxfe1xpo4x003cathodematerialswithenhancedpropertiesforlithiumionbatteries
AT hoangvtran hydrothermallysynthesizednanostructuredlimnxfe1xpo4x003cathodematerialswithenhancedpropertiesforlithiumionbatteries
AT chinhdhuynh hydrothermallysynthesizednanostructuredlimnxfe1xpo4x003cathodematerialswithenhancedpropertiesforlithiumionbatteries
_version_ 1718379455456477184