18F-fluorodeoxyglucose positron emission tomography–computed tomography for assessing organ distribution of stressed red blood cells in mice

Abstract Red blood cells (RBCs) stressed by high temperature are similar to senescent or damaged RBCs in pathological conditions. RBCs can be efficiently labelled with 18F-fluorodeoxyglucose (FDG). The aim of this study was to assess stressed RBCs erythrophagocytosis and organ distribution in vivo w...

Full description

Saved in:
Bibliographic Details
Main Authors: Wen-yu Yin, Jiao Yuan, Zhi-min Zhang, Cheng Mei, Wei Xu, Yong-xiang Tang, Fang Peng, Ning Li
Format: article
Language:EN
Published: Nature Portfolio 2021
Subjects:
R
Q
Online Access:https://doaj.org/article/2cc88a4c66164d11b341e12a0f9d50dc
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Red blood cells (RBCs) stressed by high temperature are similar to senescent or damaged RBCs in pathological conditions. RBCs can be efficiently labelled with 18F-fluorodeoxyglucose (FDG). The aim of this study was to assess stressed RBCs erythrophagocytosis and organ distribution in vivo with the application of 18F-FDG PET/CT. RBCs were induced under high temperature (48 °C) to prepare stressed RBCs. Fluorescence-activated cell sorting (FACS) was used to analyse reactive oxygen species (ROS) generation, intracellular Ca2+ concentration and membrane phosphatidylserine (PS) externalization of RBCs. 18F-FDG was used to label RBCs and assess the erythrophagocytosis. Finally, 18F-FDG PET/CT was applied to reveal and measure the organ distribution of stressed RBCs in mice. Compared with untreated RBCs, stressed RBCs decreased in cell volume and increased in ROS level, intracellular Ca2+ concentration, and PS exposure. RBCs could be labelled by 18F-FDG. Stressed RBCs tended to be phagocytosed by macrophages via assessment of FACS and radioactivity. 18F-FDG PET/CT imaging showed that stressed RBCs were mainly trapped in spleen, while untreated RBCs remained in circulation system. Thus, stressed RBCs can be effectively labelled by 18F-FDG and tend to be trapped in spleen of mice as assessed by PET/CT.